login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060637 Triangle T(n,k) (0 <= k <= n) giving number of tilings of the unary zonotope Z(n,k) (the projection onto R^k of a unit cube in R^n) by projections of the k-dimensional faces of the hypercube (again projected onto R^k). 9

%I

%S 1,2,1,4,2,1,8,6,2,1,16,24,8,2,1,32,120,62,10,2,1,64,720,908,148,12,2,

%T 1,128,5040,24698,7686,338,14,2,1,256,40320,1232944

%N Triangle T(n,k) (0 <= k <= n) giving number of tilings of the unary zonotope Z(n,k) (the projection onto R^k of a unit cube in R^n) by projections of the k-dimensional faces of the hypercube (again projected onto R^k).

%D A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999

%D N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.

%D Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

%H M. Latapy, <a href="https://arxiv.org/abs/math/0008022">Generalized Integer Partitions, Tilings of Zonotopes and Lattices</a>

%e : 1;

%e : 2, 1;

%e : 4, 2, 1;

%e : 8, 6, 2, 1;

%e : 16, 24, 8, 2, 1;

%e : 32, 120, 62, 10, 2, 1;

%e : 64, 720, 908, 148, 12, 2, 1;

%e : 128, 5040, 24698, 7686, 338, 14, 2, 1;

%Y Diagonals give A000079, A000142, A006245, A060595-A060602. Cf. A060638.

%K nonn,tabl,hard,nice

%O 0,2

%A _N. J. A. Sloane_, Apr 16 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 14:04 EDT 2020. Contains 334827 sequences. (Running on oeis4.)