|
|
A019432
|
|
Continued fraction for tan(1/9).
|
|
3
|
|
|
0, 8, 1, 25, 1, 43, 1, 61, 1, 79, 1, 97, 1, 115, 1, 133, 1, 151, 1, 169, 1, 187, 1, 205, 1, 223, 1, 241, 1, 259, 1, 277, 1, 295, 1, 313, 1, 331, 1, 349, 1, 367, 1, 385, 1, 403, 1, 421, 1, 439, 1, 457, 1, 475, 1, 493, 1, 511, 1, 529, 1, 547, 1, 565, 1, 583, 1, 601, 1, 619, 1, 637, 1, 655
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 0..20000
G. Xiao, Contfrac
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
|
|
FORMULA
|
From Colin Barker, Sep 08 2013: (Start)
a(n) = (-1+3*(-1)^n-9*(-1+(-1)^n)*n)/2 for n>1.
a(n) = 2*a(n-2)-a(n-4) for n>5.
G.f.: x*(x^4-x^3+9*x^2+x+8) / ((x-1)^2*(x+1)^2). (End)
|
|
EXAMPLE
|
0.11157062783380058372650480... = 0 + 1/(8 + 1/(1 + 1/(25 + 1/(1 + ...)))). - Harry J. Smith, Jun 14 2009
|
|
PROG
|
(PARI) { allocatemem(932245000); default(realprecision, 98000); x=contfrac(tan(1/9)); for (n=0, 20000, write("b019432.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 14 2009
(PARI) Vec(x*(x^4-x^3+9*x^2+x+8)/((x-1)^2*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 08 2013
|
|
CROSSREFS
|
Cf. A161018 (decimal expansion). - Harry J. Smith, Jun 14 2009
Sequence in context: A317640 A125235 A183892 * A211796 A138505 A002173
Adjacent sequences: A019429 A019430 A019431 * A019433 A019434 A019435
|
|
KEYWORD
|
nonn,cofr,easy
|
|
AUTHOR
|
David W. Wilson
|
|
STATUS
|
approved
|
|
|
|