login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269943
Triangle read by rows, T(n,k) = ((-1)^k*(2*n)!/4^k)*P[n,k](1/((2*n-1)*(2*n))) where P is the inverse P-transform, for n>=0 and 0<=k<=n.
0
1, 0, 1, 0, 2, 6, 0, 16, 60, 90, 0, 288, 1176, 2520, 2520, 0, 9216, 39360, 98280, 151200, 113400, 0, 460800, 2023296, 5504400, 10311840, 12474000, 7484400, 0, 33177600, 148442112, 426666240, 896575680, 1362160800, 1362160800, 681080400
OFFSET
0,5
COMMENTS
The P-transform is defined in the link. Compare also the Sage implementation below.
FORMULA
T(n,1) = 2^(n-1)*(n-1)!^2 (cf. A055546) for n>=1.
T(n,n) = (2*n)!/2^n = A000680(n).
EXAMPLE
Triangle starts:
[1]
[0, 1]
[0, 2, 6]
[0, 16, 60, 90]
[0, 288, 1176, 2520, 2520]
[0, 9216, 39360, 98280, 151200, 113400]
[0, 460800, 2023296, 5504400, 10311840, 12474000, 7484400]
PROG
(Sage) # uses[PtransMatrix from A269941]
eul = lambda n: 1/((2*n-1)*(2*n))
norm = lambda n, k: (-1)^k*factorial(2*n)/4^k
PtransMatrix(7, eul, norm, inverse=True)
CROSSREFS
Sequence in context: A131105 A321713 A057635 * A243015 A139717 A285119
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 27 2016
STATUS
approved