

A131105


Rectangular array read by antidiagonals: a(n, k) is the number of ways to put k labeled objects into n labeled boxes so that there are exactly two boxes with exactly one object (n, k >= 2).


3



2, 6, 0, 12, 0, 0, 20, 0, 36, 0, 30, 0, 144, 60, 0, 42, 0, 360, 240, 90, 0, 56, 0, 720, 600, 1440, 126, 0, 72, 0, 1260, 1200, 6300, 5544, 168, 0, 90, 0, 2016, 2100, 18000, 26460, 17472, 216, 0, 110, 0, 3024, 3360, 40950, 78120, 136080, 49248, 270, 0, 132, 0, 4320
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

Problem suggested by Brandon Zeidler. Columns 2, 4 and 5 are A002378, 36*A000292 and 60*A000292.


LINKS

Table of n, a(n) for n=2..59.


FORMULA

a(n, 2) = n^2n. For k > 2, a(n, k) = sum_{j=1..min(floor(k/2)1, n2)} A008299(k2, j)*n!*(k^2k)/(2*(nj2)!).


EXAMPLE

Array begins:
2 0 0 0 0 0
6 0 36 60 90 126
12 0 144 240 1440 5544


CROSSREFS

Cf. A131103, A131104, A131106, A131107.
Sequence in context: A267314 A180314 A065344 * A321713 A057635 A269943
Adjacent sequences: A131102 A131103 A131104 * A131106 A131107 A131108


KEYWORD

easy,nonn,tabl


AUTHOR

David Wasserman, Jun 15 2007


STATUS

approved



