login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269946
Triangle read by rows, Lah numbers of order 3, T(n,n) = 1, T(n,k) = 0 if k<0 or k>n, otherwise T(n,k) = T(n-1,k-1)+((n-1)^3+k^3)*T(n-1, k), for n>=0 and 0<=k<=n.
1
1, 0, 1, 0, 2, 1, 0, 18, 18, 1, 0, 504, 648, 72, 1, 0, 32760, 47160, 7200, 200, 1, 0, 4127760, 6305040, 1141560, 45000, 450, 1, 0, 895723920, 1416456720, 283704120, 13741560, 198450, 882, 1, 0, 308129028480, 498072032640, 106386981120, 5876519040, 106616160, 691488, 1568, 1
OFFSET
0,5
FORMULA
T(n,k) = Sum_{j=k..n} A269947(n,j)*A269948(j,k).
T(n,1) = Product_{k=1..n} (k-1)^3+1 for n>=1 (cf. A255433).
T(n,n-1) = (n-1)^2*n^2/2 for n>=1 (cf. A163102).
EXAMPLE
Triangle starts:
[1]
[0, 1]
[0, 2, 1]
[0, 18, 18, 1]
[0, 504, 648, 72, 1]
[0, 32760, 47160, 7200, 200, 1]
[0, 4127760, 6305040, 1141560, 45000, 450, 1]
MAPLE
T := proc(n, k) option remember;
`if`(n=k, 1,
`if`(k<0 or k>n, 0,
T(n-1, k-1) + ((n-1)^3+k^3) * T(n-1, k) )) end:
for n from 0 to 6 do seq(T(n, k), k=0..n) od;
MATHEMATICA
T[n_, n_] = 1; T[_, 0] = 0; T[n_, k_] /; 0 < k < n := T[n, k] = T[n-1, k-1] + ((n-1)^3 + k^3)*T[n-1, k]; T[_, _] = 0;
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
CROSSREFS
Cf. A038207 (order 0), A111596 (order 1), A268434 (order 2).
Sequence in context: A202700 A024026 A355006 * A009829 A202697 A369117
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 22 2016
STATUS
approved