login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269949
Triangle read by rows, T(n,k) = denominator(binomial(-1/2, n-k))*binomial(n-1/2, k-1/2), for n>=0 and 0<=k<=n.
2
1, 1, 1, 3, 3, 1, 5, 15, 5, 1, 35, 35, 35, 7, 1, 63, 315, 105, 63, 9, 1, 231, 693, 1155, 231, 99, 11, 1, 429, 3003, 3003, 3003, 429, 143, 13, 1, 6435, 6435, 15015, 9009, 6435, 715, 195, 15, 1, 12155, 109395, 36465, 51051, 21879, 12155, 1105, 255, 17, 1
OFFSET
0,4
COMMENTS
Numerators of "gravitational descendent fields" presented on p. 28 of the Zhou reference. See also p. 31. - Tom Copeland, Feb 13 2017
EXAMPLE
Triangle starts:
[ 1]
[ 1, 1]
[ 3, 3, 1]
[ 5, 15, 5, 1]
[ 35, 35, 35, 7, 1]
[ 63, 315, 105, 63, 9, 1]
[231, 693, 1155, 231, 99, 11, 1]
MATHEMATICA
Table[Denominator[Binomial[-1/2, n - k]] Binomial[n - 1/2, k - 1/2], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 13 2017 *)
PROG
(Sage)
A269949 = lambda n, k: binomial(-1/2, n-k).denom()*binomial(n-1/2, k-1/2)
for n in range(8): print([A269949(n, k) for k in (0..n)])
CROSSREFS
Cf. A001790 (col. 0), A001803 (col. 1), A161199 (col. 2), A161201 (col. 3).
Cf. A269950.
Sequence in context: A209583 A144944 A137426 * A074456 A016454 A065227
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 07 2016
STATUS
approved