login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144944
Super-Catalan triangle (read by rows) = triangular array associated with little Schroeder numbers (read by rows): T(0,0)=1, T(p,q) = T(p,q-1) if 0 < p = q, T(p,q) = T(p,q-1) + T(p-1,q) + T(p-1,q-1) if -1 < p < q and T(p,q) = 0 otherwise.
4
1, 1, 1, 1, 3, 3, 1, 5, 11, 11, 1, 7, 23, 45, 45, 1, 9, 39, 107, 197, 197, 1, 11, 59, 205, 509, 903, 903, 1, 13, 83, 347, 1061, 2473, 4279, 4279, 1, 15, 111, 541, 1949, 5483, 12235, 20793, 20793, 1, 17, 143, 795, 3285, 10717, 28435, 61463, 103049, 103049
OFFSET
0,5
LINKS
Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. See Fig. 8.
FORMULA
From G. C. Greubel, Mar 11 2023: (Start)
Sum_{k=0..n} T(n, k) = A010683(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A239204(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A247623(n). (End)
EXAMPLE
First few rows of the triangle:
1
1, 1
1, 3, 3
1, 5, 11, 11
1, 7, 23, 45, 45
1, 9, 39, 107, 197, 197
1, 11, 59, 205, 509, 903, 903
MATHEMATICA
t[_, 0]=1; t[p_, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q-1] + t[p-1, q] + t[p-1, q-1]; Flatten[Table[ t[p, q], {p, 0, 6}, {q, 0, p}]] (* Jean-François Alcover, Dec 19 2011 *)
PROG
(Haskell)
a144944 n k = a144944_tabl !! n !! k
a144944_row n = a144944_tabl !! n
a144944_tabl = iterate f [1] where
f us = vs ++ [last vs] where
vs = scanl1 (+) $ zipWith (+) us $ [0] ++ us
-- Reinhard Zumkeller, May 11 2013
(SageMath)
@CachedFunction
def t(n, k):
if (k<0 or k>n): return 0
elif (k==0): return 1
elif (k<n-1): return t(n, k-1) + t(n-1, k) + t(n-1, k-1)
else: return -t(n, n-2)
def T(n, k): return t(n+2, k)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 11 2023
CROSSREFS
Super-Catalan numbers or little Schroeder numbers (cf. A001003) appear on the diagonal.
Generalizes the Catalan triangle (A009766) and hence the ballot Numbers.
Cf. A033877 for a similar triangle derived from the large Schroeder numbers (A006318).
Cf. A010683 (row sums), A186826 (rows reversed).
Sequence in context: A193823 A071945 A209583 * A137426 A269949 A074456
KEYWORD
nice,nonn,tabl
AUTHOR
Johannes Fischer (Fischer(AT)informatik.uni-tuebingen.de), Sep 26 2008
STATUS
approved