OFFSET
0,5
LINKS
Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
Andrew Misseldine, Counting Schur Rings over Cyclic Groups, arXiv preprint arXiv:1508.03757 [math.RA], 2015. See Fig. 8.
FORMULA
From G. C. Greubel, Mar 11 2023: (Start)
Sum_{k=0..n} T(n, k) = A010683(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A239204(n-2).
Sum_{k=0..floor(n/2)} T(n-k, k) = A247623(n). (End)
EXAMPLE
First few rows of the triangle:
1
1, 1
1, 3, 3
1, 5, 11, 11
1, 7, 23, 45, 45
1, 9, 39, 107, 197, 197
1, 11, 59, 205, 509, 903, 903
MATHEMATICA
t[_, 0]=1; t[p_, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q-1] + t[p-1, q] + t[p-1, q-1]; Flatten[Table[ t[p, q], {p, 0, 6}, {q, 0, p}]] (* Jean-François Alcover, Dec 19 2011 *)
PROG
(Haskell)
a144944 n k = a144944_tabl !! n !! k
a144944_row n = a144944_tabl !! n
a144944_tabl = iterate f [1] where
f us = vs ++ [last vs] where
vs = scanl1 (+) $ zipWith (+) us $ [0] ++ us
-- Reinhard Zumkeller, May 11 2013
(SageMath)
@CachedFunction
def t(n, k):
if (k<0 or k>n): return 0
elif (k==0): return 1
elif (k<n-1): return t(n, k-1) + t(n-1, k) + t(n-1, k-1)
else: return -t(n, n-2)
def T(n, k): return t(n+2, k)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Mar 11 2023
CROSSREFS
KEYWORD
AUTHOR
Johannes Fischer (Fischer(AT)informatik.uni-tuebingen.de), Sep 26 2008
STATUS
approved