OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..250
Letong Hong and Rupert Li, Length-Four Pattern Avoidance in Inversion Sequences, arXiv:2112.15081 [math.CO], 2021.
FORMULA
a(n) = (Sum_{i=0..n+3} binomial(n+1, n-i+3)*binomial(n+i, n) )/(2*(n+1)).
a(n) ~ sqrt(3*sqrt(2)-4) / (4*sqrt(Pi) * n^(3/2) * (sqrt(2)-1)^(2*n+5)). - Vaclav Kotesovec, Mar 20 2014
a(n) = hypergeom([-n,-n-2], [2], 2). - Peter Luschny, Sep 23 2014
Conjectured to be D-finite with recurrence: (n+3)*a(n) + (-7*n-10)*a(n-1) + (7*n-3)*a(n-2) + (-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 02 2014
From Peter Bala, Jan 28 2020: (Start)
O.g.f. A(x) satisfies A(x*(1 - x)/(1 + x)) = Sum_{n >= 0} (n + 1)^2*x^n.
Equivalently, A(x) = (1 + x*S(x))/(1 - x*S(x))^3 where S(x) is the o.g.f. for the large Schröder numbers A006318. (End)
MATHEMATICA
CoefficientList[Series[((x-1)*Sqrt[x^2-6*x+1]-x^2-4*x+1)/(8*x^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
PROG
(Maxima) a(n):=sum(binomial(n+1, n-i+3)*binomial(n+i, n), i, 0, n+3)/(2*(n+1));
(Magma) m:=30; R<x>:=LaurentSeriesRing(RationalField(), m); Coefficients(R!(((x-1)*Sqrt(x^2-6*x+1)-x^2-4*x+1)/(8*x^3))); // Bruno Berselli, Mar 18 2014
(Sage)
A239204 = lambda n: hypergeometric([-n, -n-2], [2], 2)
[Integer(A239204(n).n(100)) for n in range(22)] # Peter Luschny, Sep 23 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Mar 17 2014
STATUS
approved