login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333059
Number of entries in the second blocks of all set partitions of [n] when blocks are ordered by decreasing lengths.
2
1, 4, 17, 76, 357, 1737, 8997, 49420, 289253, 1793221, 11727861, 80576965, 579781009, 4356513727, 34118896917, 277963716808, 2351740613433, 20630800971825, 187374815249205, 1759353644746663, 17055176943817785, 170477858336708555, 1754992340756441973
OFFSET
2,2
LINKS
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
a:= n-> b(n$2, 2)[2]:
seq(a(n), n=2..24);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i < 1, {0, 0},
Sum[Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][
multinomial[n, Append[Table[i, {j}], n - i*j]]/j!*
b[n - i*j, Min[n - i*j, i - 1], Max[0, t - j]]], {j, 0, n/i}]]];
a[n_] := b[n, n, 2][[2]];
a /@ Range[2, 24] (* Jean-François Alcover, Apr 24 2021, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A319375.
Sequence in context: A239204 A005572 A202879 * A081922 A124325 A151248
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 06 2020
STATUS
approved