login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333062
Number of entries in the fifth blocks of all set partitions of [n] when blocks are ordered by decreasing lengths.
2
1, 16, 162, 1345, 10096, 72973, 531015, 3984762, 30987321, 248303940, 2036778980, 17044330217, 145588640408, 1272940217747, 11434350878640, 105849240653792, 1011701166471075, 9987958951272492, 101765834737586068, 1068365602976497915, 11534318293877771406
OFFSET
5,2
LINKS
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(
combinat[multinomial](n, i$j, n-i*j)/j!*
b(n-i*j, min(n-i*j, i-1), max(0, t-j))), j=0..n/i)))
end:
a:= n-> b(n$2, 5)[2]:
seq(a(n), n=5..25);
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[
Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][
multinomial[n, Append[Table[i, {j}], n - i*j]]/j!*
b[n - i*j, Min[n - i*j, i - 1], Max[0, t - j]]], {j, 0, n/i}]]];
a[n_] := b[n, n, 5][[2]];
a /@ Range[5, 25] (* Jean-François Alcover, Apr 24 2021, after Alois P. Heinz *)
CROSSREFS
Column k=5 of A319375.
Sequence in context: A371195 A259547 A211558 * A208311 A232333 A091363
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Mar 06 2020
STATUS
approved