login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239201 Expansion of -(x * sqrt(5*x^2 -6*x +1) -2*x^3 +3*x^2 -x) / ((3*x^2 -4*x +1) * sqrt(5*x^2 -6*x +1) +5*x^3 -11*x^2 +7*x -1). 0
2, 5, 17, 68, 293, 1310, 5984, 27725, 129773, 612158, 2905322, 13857035, 66361892, 318901523, 1536964313, 7426185908, 35960185373, 174468439958, 847920579938, 4127211830363, 20116566452918, 98172213841553, 479635277636543, 2345731259059238, 11482918774964588, 56260052353307435, 275862429353287079, 1353641461527506630 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..28.

FORMULA

G.f. A(x) = G'(x)*(x*G(x)-x^2)/G(x)^2, where G(x) = A007317(x) = (sqrt(5*x^2-6*x+1)+x-1)/(2*x-2).

a(n) = [x^n] (F(x)^n-F(x)^(n-1)), where F(x) = (x^2-x-1)/(x-1).

a(n) = sum(k=1..n, binomial(n-1,n-k)*sum(i=0..n-k, binomial(k,n-k-i)*binomial(k+i-1,k-1)*2^(-n+2*k+i)*(-1)^(n-k-i))), n>0.

Conjecture D-finite with recurrence: (-n+1)*a(n) +(7*n-11)*a(n-1) +(-11*n+25)*a(n-2) +5*(n-3)*a(n-3)=0. - R. J. Mathar, Oct 07 2016

PROG

(Maxima)

a(n):=sum(binomial(n-1, n-k)*sum(binomial(k, n-k-i)*binomial(k+i-1, k-1)*2^(-n+2*k+i)*(-1)^(n-k-i), i, 0, n-k), k, 1, n);

(PARI) x='x+O('x^66); G=(sqrt(5*x^2-6*x+1)+x-1)/(2*x-2); Vec(G' * (x * G - x^2 ) / G^2) \\ Joerg Arndt, Mar 12 2014

CROSSREFS

A007317

Sequence in context: A003510 A051625 A056098 * A027361 A101971 A211387

Adjacent sequences:  A239198 A239199 A239200 * A239202 A239203 A239204

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Mar 12 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 08:33 EDT 2020. Contains 335720 sequences. (Running on oeis4.)