login
A211387
Expansion of x*(1 -15*x +99*x^2 -373*x^3 +879*x^4 -1338*x^5 +1311*x^6 -804*x^7 +289*x^8 -44*x^9) / [(1-3*x+x^2) *(1-2*x)^6 *(1-x)^2].
0
1, 2, 5, 17, 69, 286, 1137, 4277, 15247, 51786, 168566, 528740, 1606023, 4744071, 13678697, 38620692, 107073080, 292195582, 786536753, 2092318473, 5509620835, 14382935710, 37272512506, 96000674264, 246029006363, 628007115019, 1598123382173, 4057780889704
OFFSET
1,2
COMMENTS
Appears in the enumeration of {1324,4312}-avoiding permutations. [Albert et al., Section 5.7]
LINKS
M. H. Albert, M. D. Atkinson, R. Brignall, The enumeration of three pattern classes using monotone grid classes, E. J. Combinat. 19 (3) (2012) P20.
Index entries for linear recurrences with constant coefficients, signature (17,-128,561,-1581,2984,-3804,3216,-1712,512,-64).
FORMULA
a(n) = -21 -5*n +2^n*(267/16 +n^4/128 -161*n^3/768 +229*n^2/128 -451*n/40 +n^5/3840) +A001519(n+3).
CROSSREFS
Sequence in context: A239201 A027361 A101971 * A372376 A303952 A162037
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Feb 07 2013
STATUS
approved