OFFSET
1,2
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
From Vladeta Jovovic, Nov 23 2003: (Start)
G.f.: (sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2. (End)
From Paul Barry, May 19 2005: (Start)
a(n) = Sum_{k=0..n} C(n+k+1, n+1)*C(n+1, k)/(k+1).
a(n) = Sum_{k=0..n+1} C(n+2, k)*C(n+k, n+1)/(n+2). (End)
D-finite with recurrence n*(n+1)*a(n) -n*(11*n-7)*a(n-1) +(37*n^2-95*n+54)*a(n-2) +(-49*n^2+269*n-354)*a(n-3) +6*(9*n^2-71*n+138)*a(n-4) -4*(2*n-9)*(n-5)*a(n-5)=0. - R. J. Mathar, Aug 05 2021
MAPLE
seq(coeff(series((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2, x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
MATHEMATICA
Rest@CoefficientList[Series[(Sqrt[1-4*x] - Sqrt[1-6*x+x^2])/(2*x) -1/2, {x, 0, 30}], x] (* G. C. Greubel, Nov 01 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2) \\ G. C. Greubel, Nov 01 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt(1-4*x) - Sqrt(1-6*x+x^2))/(2*x) -1/2 )); // G. C. Greubel, Nov 01 2019
(Sage)
def A026773_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2).list()
a=A026773_list(30); a[1:] # G. C. Greubel, Nov 01 2019
(GAP) List([0..30], n-> Sum([0..n], k-> Binomial(n+1, k)*Binomial(n+k+1, n+1)/(k+1) )); # G. C. Greubel, Nov 01 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved