login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026773
a(n) = T(2n-1,n-1), T given by A026769. Also T(2n+1,n+1), T given by A026780.
11
1, 4, 17, 76, 352, 1674, 8129, 40156, 201236, 1020922, 5234660, 27089726, 141335846, 742712598, 3927908193, 20891799036, 111688381228, 599841215226, 3234957053984, 17512055200470, 95125188934942, 518340392855286, 2832580291316092, 15520177744727766
OFFSET
1,2
LINKS
FORMULA
From Vladeta Jovovic, Nov 23 2003: (Start)
a(n) = A006318(n) - A000108(n).
G.f.: (sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2. (End)
From Paul Barry, May 19 2005: (Start)
a(n) = Sum_{k=0..n} C(n+k+1, n+1)*C(n+1, k)/(k+1).
a(n) = Sum_{k=0..n+1} C(n+2, k)*C(n+k, n+1)/(n+2). (End)
D-finite with recurrence n*(n+1)*a(n) -n*(11*n-7)*a(n-1) +(37*n^2-95*n+54)*a(n-2) +(-49*n^2+269*n-354)*a(n-3) +6*(9*n^2-71*n+138)*a(n-4) -4*(2*n-9)*(n-5)*a(n-5)=0. - R. J. Mathar, Aug 05 2021
MAPLE
seq(coeff(series((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2, x, n+1), x, n), n = 0..30); # G. C. Greubel, Nov 01 2019
MATHEMATICA
Rest@CoefficientList[Series[(Sqrt[1-4*x] - Sqrt[1-6*x+x^2])/(2*x) -1/2, {x, 0, 30}], x] (* G. C. Greubel, Nov 01 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2) \\ G. C. Greubel, Nov 01 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt(1-4*x) - Sqrt(1-6*x+x^2))/(2*x) -1/2 )); // G. C. Greubel, Nov 01 2019
(Sage)
def A026773_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((sqrt(1-4*x) - sqrt(1-6*x+x^2))/(2*x) -1/2).list()
a=A026773_list(30); a[1:] # G. C. Greubel, Nov 01 2019
(GAP) List([0..30], n-> Sum([0..n], k-> Binomial(n+1, k)*Binomial(n+k+1, n+1)/(k+1) )); # G. C. Greubel, Nov 01 2019
KEYWORD
nonn
STATUS
approved