login
A026772
a(n) = T(2n, n-2), T given by A026769.
11
1, 10, 71, 444, 2616, 14938, 83821, 465654, 2572166, 14164320, 77886902, 428113940, 2353823912, 12950837432, 71326701751, 393289209772, 2171308560036, 12003376308370, 66445540183348, 368304502202306, 2044177115127750
OFFSET
2,2
LINKS
MAPLE
T:= proc(n, k) option remember;
if n<0 then 0;
elif k=0 or k=n then 1;
elif n=2 and k=1 then 2;
elif k <= (n-1)/2 then
procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;
else
procname(n-1, k-1)+procname(n-1, k) ;
end if ;
end proc;
seq(T(2*n, n-2), n=2..30); # G. C. Greubel, Nov 01 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[T[2*n, n-2], {n, 2, 30}] (* G. C. Greubel, Nov 01 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k==0 or k==n): return 1
elif (n==2 and k==1): return 2
elif (k<=(n-1)/2): return T(n-1, k-1) + T(n-2, k-1) + T(n-1, k)
else: return T(n-1, k-1) + T(n-1, k)
[T(2*n, n-2) for n in (2..30)] # G. C. Greubel, Nov 01 2019
KEYWORD
nonn
STATUS
approved