login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Super-Catalan triangle (read by rows) = triangular array associated with little Schroeder numbers (read by rows): T(0,0)=1, T(p,q) = T(p,q-1) if 0 < p = q, T(p,q) = T(p,q-1) + T(p-1,q) + T(p-1,q-1) if -1 < p < q and T(p,q) = 0 otherwise.
4

%I #28 Mar 11 2023 08:16:39

%S 1,1,1,1,3,3,1,5,11,11,1,7,23,45,45,1,9,39,107,197,197,1,11,59,205,

%T 509,903,903,1,13,83,347,1061,2473,4279,4279,1,15,111,541,1949,5483,

%U 12235,20793,20793,1,17,143,795,3285,10717,28435,61463,103049,103049

%N Super-Catalan triangle (read by rows) = triangular array associated with little Schroeder numbers (read by rows): T(0,0)=1, T(p,q) = T(p,q-1) if 0 < p = q, T(p,q) = T(p,q-1) + T(p-1,q) + T(p-1,q-1) if -1 < p < q and T(p,q) = 0 otherwise.

%H Reinhard Zumkeller, <a href="/A144944/b144944.txt">Rows n = 0..125 of triangle, flattened</a>

%H Andrew Misseldine, <a href="http://arxiv.org/abs/1508.03757">Counting Schur Rings over Cyclic Groups</a>, arXiv preprint arXiv:1508.03757 [math.RA], 2015. See Fig. 8.

%F From _G. C. Greubel_, Mar 11 2023: (Start)

%F Sum_{k=0..n} T(n, k) = A010683(n).

%F Sum_{k=0..n} (-1)^k*T(n, k) = A239204(n-2).

%F Sum_{k=0..floor(n/2)} T(n-k, k) = A247623(n). (End)

%e First few rows of the triangle:

%e 1

%e 1, 1

%e 1, 3, 3

%e 1, 5, 11, 11

%e 1, 7, 23, 45, 45

%e 1, 9, 39, 107, 197, 197

%e 1, 11, 59, 205, 509, 903, 903

%t t[_, 0]=1; t[p_, p_]:= t[p, p]= t[p, p-1]; t[p_, q_]:= t[p, q]= t[p, q-1] + t[p-1, q] + t[p-1, q-1]; Flatten[Table[ t[p, q], {p,0,6}, {q,0, p}]] (* _Jean-François Alcover_, Dec 19 2011 *)

%o (Haskell)

%o a144944 n k = a144944_tabl !! n !! k

%o a144944_row n = a144944_tabl !! n

%o a144944_tabl = iterate f [1] where

%o f us = vs ++ [last vs] where

%o vs = scanl1 (+) $ zipWith (+) us $ [0] ++ us

%o -- _Reinhard Zumkeller_, May 11 2013

%o (SageMath)

%o @CachedFunction

%o def t(n,k):

%o if (k<0 or k>n): return 0

%o elif (k==0): return 1

%o elif (k<n-1): return t(n,k-1) + t(n-1,k) + t(n-1,k-1)

%o else: return -t(n,n-2)

%o def T(n,k): return t(n+2,k)

%o flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Mar 11 2023

%Y Super-Catalan numbers or little Schroeder numbers (cf. A001003) appear on the diagonal.

%Y Generalizes the Catalan triangle (A009766) and hence the ballot Numbers.

%Y Cf. A033877 for a similar triangle derived from the large Schroeder numbers (A006318).

%Y Cf. A010683 (row sums), A186826 (rows reversed).

%Y Cf. A239204, A247623.

%K nice,nonn,tabl

%O 0,5

%A Johannes Fischer (Fischer(AT)informatik.uni-tuebingen.de), Sep 26 2008