login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247623
Number of paths from (0,0) to the line x = n, each segment given by a vector (1,1), (1,-1), or (2,0), not crossing the x-axis, and including no horizontal segment on the x-axis.
5
1, 1, 2, 4, 9, 19, 44, 96, 225, 501, 1182, 2668, 6321, 14407, 34232, 78592, 187137, 432073, 1030490, 2390004, 5707449, 13286043, 31760676, 74160672, 177435297, 415382397, 994551222, 2333445468, 5590402785, 13141557519, 31500824304, 74174404608, 177880832001
OFFSET
0,3
COMMENTS
a(n) = sum of numbers in row n of A247622.
FORMULA
Conjecture: (n+1)*a(n) +(n-3)*a(n-1) +2*(-3*n+2)*a(n-2) +2*(-3*n+8)*a(n-3) +(n-5)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Sep 23 2014
EXAMPLE
First 9 rows of A247622:
1
0 ... 1
1 ... 0 ... 1
0 ... 3 ... 0 ... 1
3 ... 0 ... 5 ... 0 ... 1
0 ... 11 .. 0 ... 7 ... 0 ...1
11 .. 0 ... 23 .. 0 ... 9 ... 0 ... 1
0 ... 45 .. 0 ... 39 .. 0 ... 11 .. 0 ... 1
45 .. 0 ... 107 . 0 ... 59 .. 0 ... 13 .. 0 ... 1
a(5) = 0 + 11 + 0 + 7 + 0 + 1 = 19
MATHEMATICA
t[0, 0] = 1; t[1, 1] = 1; t[2, 0] = 1; t[2, 2] = 1; t[n_, k_] := t[n, k] = If[n >= 2 && k >= 1, t[n - 1, k - 1] + t[n - 1, k + 1] + t[n - 2, k], 0]; t[n_, 0] := t[n, 0] = t[n - 1, 1]; u = Table[t[n, k], {n, 0, 16}, {k, 0, n}];
v = Flatten[u] (* A247622 sequence *)
TableForm[u] (* A247622 array *)
Map[Total, u] (* A247623 *)
CROSSREFS
Cf. A247622.
Sequence in context: A026776 A117160 A339156 * A084083 A036611 A316473
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 21 2014
STATUS
approved