login
A247620
Start with a single hexagon; at n-th generation add a hexagon at each expandable vertex; a(n) is the sum of all label values at n-th generation. (See comment for construction rules.)
10
1, 7, 25, 67, 157, 343, 721, 1483, 3013, 6079, 12217, 24499, 49069, 98215, 196513, 393115, 786325, 1572751, 3145609, 6291331, 12582781, 25165687, 50331505, 100663147, 201326437, 402653023, 805306201, 1610612563, 3221225293, 6442450759, 12884901697
OFFSET
0,2
COMMENTS
Inspired by A061777, let us assign the label "1" to an origin hexagon; at n-th generation add a hexagon at each expandable vertex, i.e. a vertex such that the new added generations will not overlap to the existing ones, but overlapping among new generations are allowed. The non-overlapping squares will have the same label value as a predecessor; for the overlapping ones, the label value will be sum of label values of predecessors. The hexagons count is A003215. See llustration. For n >= 1, (a(n) - a(n-1))/6 is A000225
FORMULA
a(0) = 1, for n >= 1, a(n) = 6*A000225(n) + a(n-1).
From Colin Barker, Sep 21 2014: (Start)
a(n) = (-11+3*2^(2+n)-6*n).
a(n) = 4*a(n-1)-5*a(n-2)+2*a(n-3).
G.f.: -(x+1)*(2*x+1) / ((x-1)^2*(2*x-1)).
(End)
MATHEMATICA
A247620[n_] := 3*2^(n+2) - 6*n - 11; Array[A247620, 50, 0] (* or *)
LinearRecurrence[{4, -5, 2}, {1, 7, 25}, 50] (* Paolo Xausa, Aug 22 2024 *)
PROG
(PARI) a(n) = if (n<1, 1, 6*(2^n-1)+a(n-1))
for (n=0, 50, print1(a(n), ", "))
(PARI) Vec(-(x+1)*(2*x+1)/((x-1)^2*(2*x-1)) + O(x^100)) \\ Colin Barker, Sep 21 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Sep 21 2014
EXTENSIONS
More terms from Colin Barker, Sep 21 2014
STATUS
approved