login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061777 Start with a single triangle; at n-th generation add a triangle at each vertex, allowing triangles to overlap; sequence gives total population of triangles at n-th generation. 16
1, 4, 10, 22, 40, 70, 112, 178, 268, 406, 592, 874, 1252, 1822, 2584, 3730, 5260, 7558, 10624, 15226, 21364, 30574, 42856, 61282, 85852, 122710, 171856, 245578, 343876, 491326, 687928, 982834, 1376044, 1965862, 2752288, 3931930, 5504788 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

From the definition, assign label value "1" to an origin triangle; at n-th generation add a triangle at each vertex. Each non-overlapping triangle will have the same label value as that of the predecessor triangle to which it is connected; for the overlapping ones, the label value will be the sum of the label values of predecessors. a(n) is the sum of all label values at the n-th generation. The triangle count is A005448. See illustration. For n >= 1, (a(n) - a(n-1))/3 is A027383. - Kival Ngaokrajang, Sep 05 2014

REFERENCES

R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.

LINKS

Table of n, a(n) for n=0..36.

Kival Ngaokrajang, Illustration of initial terms

R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Scanned photocopy of pages 5, 6 only, with annotations by R. K. Guy and N. J. A. Sloane]

Index entries for linear recurrences with constant coefficients, signature (2,1,-4,2).

FORMULA

From Colin Barker, May 08 2012: (Start)

a(n) = 21*2^(n/2) - 6*n - 20 if n is even.

a(n) = 30*2^((n-1)/2) - 6*(n - 1) - 26 if n is odd.

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + 2*a(n-4).

G.f.: (1 + 2*x)*(1 + x^2)/((1 - x)^2*(1 - 2*x^2)). (End)

From Robert Israel, Sep 14 2014: (Start)

a(n) = -20 - 6*n + (21 + 15*sqrt(2))*sqrt(2)^(n-2) + (21 - 15*sqrt(2))*(-sqrt(2))^(n-2).

a(n) = 2*a(n-2) + ((3*n-2)/(3*n-5))*(a(n-1)-2*a(n-3)). (End)

E.g.f.: 21*cosh(sqrt(2)*x) + 15*sqrt(2)*sinh(sqrt(2)*x) - 2*exp(x)*(10 + 3*x). - Stefano Spezia, Aug 13 2022

MAPLE

seq(`if`(n::even, 21*2^(n/2) - 6*n-20, 30*2^((n-1)/2)-6*n-20), n=0..100); # Robert Israel, Sep 14 2014

MATHEMATICA

Table[If[EvenQ[n], 21 2^(n/2)-6n-20, 30 2^((n-1)/2)-6(n-1)-26], {n, 0, 40}] (* Harvey P. Dale, Nov 06 2011 *)

PROG

(PARI) a(n)=if(n%2, 30, 21)<<(n\2) - 6*n - 20 \\ Charles R Greathouse IV, Sep 19 2014

CROSSREFS

Partial sums of A061776.

Cf. A005448, A027383.

Sequence in context: A008248 A301243 A177736 * A298030 A155369 A155404

Adjacent sequences: A061774 A061775 A061776 * A061778 A061779 A061780

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane, R. K. Guy, Jun 23 2001

EXTENSIONS

Corrected by T. D. Noe, Nov 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 20:27 EST 2022. Contains 358362 sequences. (Running on oeis4.)