login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161199
Numerators in expansion of (1-x)^(-5/2).
9
1, 5, 35, 105, 1155, 3003, 15015, 36465, 692835, 1616615, 7436429, 16900975, 152108775, 339319575, 1502700975, 3305942145, 115707975075, 251835004575, 1091285019825, 2354878200675, 20251952525805, 43397041126725, 185423721177825, 395033145117975
OFFSET
0,2
LINKS
FORMULA
a(n) = numerator(((3 + 8*n + 4*n^2)/3)*binomial(2*n,n)/(4^n)).
a(n) = denominator((3/2)*Integral_{x=0..1} x^n*sqrt(1-x) dx), where the integral is sqrt(Pi)*n!/Gamma(n+5/2) = n!/( (n+3/2)*(n+1/2)*(n-1/2)*...*(1/2)). - Groux Roland, Feb 23 2011
MATHEMATICA
Numerator[CoefficientList[Series[(1-x)^(-5/2), {x, 0, 30}], x]] (* or *) Numerator[Table[(4n^2+8n+3)/3 Binomial[2n, n]/4^n, {n, 0, 30}]] (* Harvey P. Dale, Oct 15 2011 *)
PROG
(Magma)
A161199:= func< n | Numerator( Binomial(n+3, 3)*Catalan(n+2)/2^(2*n+1) ) >;
[A161199(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
(SageMath)
def A161199(n): return numerator((-1)^n*binomial(-5/2, n))
[A161199(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
CROSSREFS
Cf. A161198 (triangle for (1-x)^((-1-2*n)/2) for all values of n).
Cf. A046161 (denominators for (1-x)^(-5/2)).
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), this sequence (p=-5), A161201 (p=-7).
Sequence in context: A369812 A090294 A162540 * A111877 A179337 A053126
KEYWORD
easy,nonn,frac
AUTHOR
Johannes W. Meijer, Jun 08 2009
STATUS
approved