login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161202
Numerators in expansion of (1-x)^(5/2).
8
1, -5, 15, -5, -5, -3, -5, -5, -45, -55, -143, -195, -1105, -1615, -4845, -7429, -185725, -294975, -950475, -1550775, -10235115, -17058525, -57378675, -97294275, -1329688425, -2287064091, -7916760315, -13781027215
OFFSET
0,2
LINKS
FORMULA
a(n) = numerator( (15/(15-46*n+36*n^2-8*n^3))*binomial(2*n,n)/(4^n) ).
a(n) = (-1)^n*numerator( binomial(5/2, n) ). - G. C. Greubel, Sep 24 2024
MATHEMATICA
Numerator[CoefficientList[Series[(1-x)^(5/2), {x, 0, 30}], x]] (* Harvey P. Dale, Aug 22 2011 *)
Table[(-1)^n*Numerator[Binomial[5/2, n]], {n, 0, 30}] (* G. C. Greubel, Sep 24 2024 *)
PROG
(Magma)
A161202:= func< n | -Numerator(15*(n+1)*Catalan(n)/(4^n*(2*n-1)*(2*n-3)*(2*n-5))) >;
[A161202(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
(SageMath)
def A161202(n): return (-1)^n*numerator(binomial(5/2, n))
[A161202(n) for n in range(31)] # G. C. Greubel, Sep 24 2024
CROSSREFS
Cf. A046161 (denominators).
Cf. A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
Numerators of [x^n]( (1-x)^(p/2) ): this sequence (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), A161199 (p=-5), A161201 (p=-7).
Sequence in context: A367030 A107776 A290528 * A154353 A077348 A290829
KEYWORD
easy,sign,frac
AUTHOR
Johannes W. Meijer, Jun 08 2009
STATUS
approved