login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154353
Triangle T(n,m) read by rows: T(n,m) = ( Eulerian(n,m) - Binomial(n,m)^2 )/2, n >= 4, 2 <= m = <= n-1.
1
1, 1, 5, 15, 5, 16, 101, 101, 16, 42, 483, 1008, 483, 42, 99, 1926, 7197, 7197, 1926, 99, 219, 6912, 42549, 75645, 42549, 6912, 219, 466, 23272, 224068, 647239, 647239, 224068, 23272, 466, 968, 75306, 1094544, 4847007, 7830372, 4847007, 1094544, 75306, 968
OFFSET
4,3
COMMENTS
Row sums are: {2, 25, 234, 2058, 18444, 175005, 1790090, 19866022, 239148084, 3112158322, 43583945300,...}.
Noticing the Eulerian numbers and the binomial squared were the same for the first four rows, I subtracted them and extracted the zeros to get this sequence.
The resulting fractal can be obtained from the Mathematica code given in the Mathematica code section.
FORMULA
T(n,m) = ( Eulerian(n,m) - Binomial(n,m)^2 )/2 for n >= 4, and 2 <= m <= n-1.
EXAMPLE
{1, 1},
{5, 15, 5},
{16, 101, 101, 16},
{42, 483, 1008, 483, 42},
{99, 1926, 7197, 7197, 1926, 99},
{219, 6912, 42549, 75645, 42549, 6912, 219},
{466, 23272, 224068, 647239, 647239, 224068, 23272, 466},
{968, 75306, 1094544, 4847007, 7830372, 4847007, 1094544, 75306, 968},
{1981, 237623, 5080230, 33104787, 81149421, 81149421, 33104787, 5080230, 237623, 1981},
{4017, 737685, 22742525, 211518255, 752497122, 1137159114, 752497122, 211518255, 22742525, 737685, 4017},
{8100, 2265615, 99164495, 1285615475, 6420803247, 13984115718, 13984115718, 6420803247, 1285615475, 99164495, 2265615, 8100}
MATHEMATICA
p[x_, n_] = (x - 1)^(n + 1)*Sum[((-1)^(n + 1)*k^n)*x^k, {k, 0, Infinity}]/x; Table[Table[(CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m]] - Binomial[n - 1, m - 1]^2)/2, {m, 2, n - 1}], {n, 4, 14}]; Flatten[%]
(* fractal code *)
a = Table[Table[(CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m]] - Binomial[n - 1, m - 1]^2)/2, {m, 2, n - 1}], {n, 4, 34}];
b = Table[If[m <= n + 1, Mod[a[[n]][[m]], 2], 0], {m, 1, Length[a]}, {n, 1, Length[a]}]; ListDensityPlot[b, Mesh -> False]
CROSSREFS
Sequence in context: A107776 A290528 A161202 * A077348 A290829 A290837
KEYWORD
nonn,tabf
AUTHOR
Roger L. Bagula, Jan 07 2009
STATUS
approved