Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 24 2024 03:10:45
%S 1,5,35,105,1155,3003,15015,36465,692835,1616615,7436429,16900975,
%T 152108775,339319575,1502700975,3305942145,115707975075,251835004575,
%U 1091285019825,2354878200675,20251952525805,43397041126725,185423721177825,395033145117975
%N Numerators in expansion of (1-x)^(-5/2).
%H Harvey P. Dale, <a href="/A161199/b161199.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = numerator(((3 + 8*n + 4*n^2)/3)*binomial(2*n,n)/(4^n)).
%F a(n) = denominator((3/2)*Integral_{x=0..1} x^n*sqrt(1-x) dx), where the integral is sqrt(Pi)*n!/Gamma(n+5/2) = n!/( (n+3/2)*(n+1/2)*(n-1/2)*...*(1/2)). - _Groux Roland_, Feb 23 2011
%t Numerator[CoefficientList[Series[(1-x)^(-5/2),{x,0,30}],x]] (* or *) Numerator[Table[(4n^2+8n+3)/3 Binomial[2n,n]/4^n,{n,0,30}]] (* _Harvey P. Dale_, Oct 15 2011 *)
%o (Magma)
%o A161199:= func< n | Numerator( Binomial(n+3,3)*Catalan(n+2)/2^(2*n+1) ) >;
%o [A161199(n): n in [0..30]]; // _G. C. Greubel_, Sep 24 2024
%o (SageMath)
%o def A161199(n): return numerator((-1)^n*binomial(-5/2,n))
%o [A161199(n) for n in range(31)] # _G. C. Greubel_, Sep 24 2024
%Y Cf. A161198 (triangle for (1-x)^((-1-2*n)/2) for all values of n).
%Y Cf. A046161 (denominators for (1-x)^(-5/2)).
%Y Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), this sequence (p=-5), A161201 (p=-7).
%K easy,nonn,frac
%O 0,2
%A _Johannes W. Meijer_, Jun 08 2009