The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162540 a(n) = (2*n+1)*(2*n+3)*(2*n+5)/3. 2
 5, 35, 105, 231, 429, 715, 1105, 1615, 2261, 3059, 4025, 5175, 6525, 8091, 9889, 11935, 14245, 16835, 19721, 22919, 26445, 30315, 34545, 39151, 44149, 49555, 55385, 61655, 68381, 75579, 83265, 91455, 100165, 109411, 119209, 129575, 140525, 152075, 164241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4. M. R. Sepanski, On Divisibility of Convolutions of Central Binomial Coefficients, Electronic Journal of Combinatorics, 21 (1) 2014, #P1.32. Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = A061550(n)/3 = A077415(2*n+3). From R. J. Mathar, Jul 16 2009: (Start) a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. G.f.: (5 + 15*x - 5*x^2 + x^3)/(x-1)^4. (End) a(n) = 5*Pochhammer(7/2,n)/Pochhammer(1/2,n). Hence e.g.f. is 5* 1F1(7/2;1/2;x), with 1F1 being the confluent hypergemetric function (also known as Kummer's). - Stanislav Sykora, May 26 2016 E.g.f.: (8*x^3 + 60*x^2 + 90*x + 15)*exp(x)/3. - Robert Israel, May 27 2016 MAPLE A162540:=n->(2*n+1)*(2*n+3)*(2*n+5)/3: seq(A162540(n), n=0..80); # Wesley Ivan Hurt, May 28 2016 MATHEMATICA Table[((2n+1)(2n+3)(2n+5))/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {5, 35, 105, 231}, 40] (* Harvey P. Dale, Nov 06 2011 *) PROG (MAGMA) [(2*n+1)*(2*n+3)*(2*n+5)/3: n in [0..40]]; // Vincenzo Librandi, Nov 16 2011 (PARI) Vec((5+15*x-5*x^2+x^3)/(x-1)^4 + O(x^100)) \\ Altug Alkan, Oct 26 2015 CROSSREFS Cf. A061550, A077415. Sequence in context: A145920 A153785 A090294 * A161199 A111877 A179337 Adjacent sequences:  A162537 A162538 A162539 * A162541 A162542 A162543 KEYWORD nonn,easy AUTHOR Jacob Landon (jacoblandon(AT)aol.com), Jul 05 2009 EXTENSIONS Offset corrected, definition clarified by R. J. Mathar, Jul 16 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 26 09:20 EST 2020. Contains 332277 sequences. (Running on oeis4.)