login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162539
G.f. is the polynomial (1-x^3) * (1-x^6) * (1-x^9) * (1-x^12) * (1-x^15) * (1-x^18) / (1-x)^6.
1
1, 6, 21, 55, 120, 231, 405, 660, 1014, 1484, 2085, 2829, 3724, 4773, 5973, 7315, 8784, 10359, 12013, 13713, 15420, 17091, 18681, 20145, 21440, 22527, 23373, 23952, 24246, 24246, 23952, 23373, 22527, 21440, 20145, 18681, 17091, 15420, 13713
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MATHEMATICA
CoefficientList[ Series[Times @@ (1 - x^(3 Range@6))/(1 - x)^6, {x, 0, 70}], x] (* G. C. Greubel, Jul 06 2018 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) x='x+O('x^58); Vec((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)/(1-x)^6) /* complete row */ \\ G. C. Greubel, Jul 06 2018
(Magma) m:=58; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x^3)*(1-x^6)*(1-x^9)*(1-x^12)*(1-x^15)*(1-x^18)/(1-x)^6)); /* complete row */ // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A025203 A262719 A238702 * A259474 A002817 A132366
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved