login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153785
5 times heptagonal numbers: a(n) = 5*n*(5*n-3)/2.
2
0, 5, 35, 90, 170, 275, 405, 560, 740, 945, 1175, 1430, 1710, 2015, 2345, 2700, 3080, 3485, 3915, 4370, 4850, 5355, 5885, 6440, 7020, 7625, 8255, 8910, 9590, 10295, 11025, 11780, 12560, 13365, 14195, 15050, 15930, 16835, 17765
OFFSET
0,2
FORMULA
a(n) = (25*n^2 - 15*n)/2 = A000566(n)*5.
a(n) = 25*n + a(n-1) - 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From G. C. Greubel, Aug 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 5*x*(1 + 4*x)/(1 - x)^3.
E.g.f.: (5/2)*x*(2 + 5*x)*exp(x). (End)
MATHEMATICA
s=0; lst={s}; Do[s+=n; AppendTo[lst, s], {n, 5, 8!, 25}]; lst (* Vladimir Joseph Stephan Orlovsky, Apr 03 2009 *)
Table[5*n*(5*n - 3)/2, {n, 0, 25}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 5, 35}, 25] (* G. C. Greubel, Aug 28 2016 *)
PROG
(PARI) a(n) = 5*n*(5*n-3)/2; \\ Michel Marcus, Aug 28 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jan 07 2009
STATUS
approved