login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145920
List of numbers that are both pentagonal (A000326) and binomial coefficients C(n,4) (A000332).
5
0, 1, 5, 35, 70, 210, 330, 715, 1001, 1820, 2380, 3876, 4845, 7315, 8855, 12650, 14950, 20475, 23751, 31465, 35960, 46376, 52360, 66045, 73815, 91390, 101270, 123410, 135751, 163185, 178365, 211876, 230300, 270725, 292825, 341055, 367290, 424270
OFFSET
1,3
COMMENTS
All binomial coefficients C(n,4) belong to the generalized pentagonal sequence (A001318).
Pentagonal numbers of generalized pentagonal number (A001318) index number. - Raphie Frank, Nov 25 2012
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n+1) = A000326 (A001318(n)).
Positive values of A000332(n) belong to the sequence if and only if 3 does not divide n. A000332(n) is positive when n>3.
Conjecture: a(n) = a(n-1) + 4a(n-2) - 4a(n-3) - 6a(n-4) + 6a(n-5) + 4a(n-6) - 4a(n-7) - a(n-8) + a(n-9). - R. J. Mathar, Oct 29 2008
Conjecture: G.f.: x^2(1 + 4x + 26x^2 + 19x^3 + 4x^5 + x^6 + 26x^4)/((1+x)^4(1-x)^5). - R. J. Mathar, Oct 29 2008
a(n) = (27x^4 - 18x^3 - 3x^2 + 2x)/8 where x = floor(n/2)*(-1)^n, for n >= 1. - William A. Tedeschi, Aug 16 2010
EXAMPLE
35, for example, is both A000326(5) and A000332(7).
CROSSREFS
Cf. A141919, of which this is a subsequence.
Sequence in context: A371561 A115707 A117793 * A356179 A356132 A153785
KEYWORD
easy,nonn
AUTHOR
Matthew Vandermast, Oct 28 2008
STATUS
approved