login
A145919
A000332(n) = a(n)*(3*a(n) - 1)/2.
5
0, 0, 0, 0, 1, 2, -3, 5, 7, -9, 12, 15, -18, 22, 26, -30, 35, 40, -45, 51, 57, -63, 70, 77, -84, 92, 100, -108, 117, 126, -135, 145, 155, -165, 176, 187, -198, 210, 222, -234, 247, 260, -273, 287, 301, -315, 330, 345, -360, 376, 392, -408, 425, 442, -459, 477
OFFSET
0,6
COMMENTS
As the formula in the description shows, all members of A000332 belong to the generalized pentagonal sequence (A001318). A001318 also lists all nonnegative numbers that belong to A145919.
LINKS
Eric Weisstein's World of Mathematics, Pentagonal Number.
Eric Weisstein's World of Mathematics, Pentatope Number.
FORMULA
a(n+3) = A001840(n) when 3 does not divide n, A001840(n)*-1 otherwise.
After first two zeros, this sequence consists of all values of A001318(n) and A045943(n)*(-1), n>=0, sorted in order of increasing absolute value.
G.f.: (-x^4*(x^4+2*x^3-3*x^2+2*x+1))/((x-1)^3*(1+x^2+x)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009
EXAMPLE
a(6) = -3 and A000332(6) = (-3)(-10)/2 = 15.
MATHEMATICA
CoefficientList[Series[(-x^4*(x^4 + 2*x^3 - 3*x^2 + 2*x + 1))/((x - 1)^3*(1 + x^2 + x)^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 13 2017 *)
LinearRecurrence[{0, 0, 3, 0, 0, -3, 0, 0, 1}, {0, 0, 0, 0, 1, 2, -3, 5, 7}, 60] (* Harvey P. Dale, Feb 13 2023 *)
PROG
(PARI) x='x+O('x^50); concat([0, 0, 0, 0], Vec((-x^4*(x^4 +2*x^3 -3*x^2 +2*x +1))/((x-1)^3*(1+x^2+x)^3))) \\ G. C. Greubel, Jun 13 2017
CROSSREFS
Sequence in context: A071423 A211004 A062781 * A058937 A130518 A001840
KEYWORD
easy,sign
AUTHOR
Matthew Vandermast, Oct 28 2008
STATUS
approved