OFFSET
1,5
COMMENTS
This sequence seems to be a shifted version of the Somos sequence A058937.
Equal to the partial sums of A002264 (cf. A130518) but with initial index 1 instead of 0. - Hieronymus Fischer, Jun 01 2007
Apart from offset, the same as A130518. - R. J. Mathar, Jun 13 2008
Apart from offset, the same as A001840. - Michael Somos, Sep 18 2010
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..750
Michael Somos, Somos Polynomials
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
FORMULA
a(n) = P(n,4), where P(n,k) = n*floor(n/(k - 1)) - (1/2)(k - 1)(floor(n/(k - 1))*(floor(n/(k - 1)) + 1)); recursion: a(n) = a(n-3) + n - 3; a(1) = a(2) = a(3) = 0.
From Hieronymus Fischer, Jun 01 2007: (Start)
a(n) = (1/2)*floor((n-1)/3)*(2*n - 3 - 3*floor((n-1)/3)).
G.f.: x^4/((1 - x^3)*(1 - x)^2). (End)
a(n) = floor((n-1)/3) + a(n-1). - Jon Maiga, Nov 25 2018
E.g.f.: ((4 - 6*x + 3*x^2)*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/18. - Franck Maminirina Ramaharo, Nov 25 2018
MAPLE
seq(coeff(series(x^4/((1-x^3)*(1-x)^2), x, n+1), x, n), n = 1 .. 50); # Muniru A Asiru, Nov 25 2018
MATHEMATICA
RecurrenceTable[{a[0]==0, a[n]==Floor[n/3] + a[n-1]}, a, {n, 49}] (* Jon Maiga, Nov 25 2018 *)
PROG
(Sage) [floor(binomial(n, 2)/3) for n in range(0, 50)] # Zerinvary Lajos, Dec 01 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Santi Spadaro, Jul 18 2001
STATUS
approved