login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A024195
Integer part of (4th elementary symmetric function of S(n))/(3rd elementary symmetric of S(n)), where S(n) = {3,4, ..., n+5}.
1
1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 25, 28, 32, 37, 41, 46, 51, 56, 62, 67, 73, 80, 86, 93, 100, 107, 115, 122, 130, 139, 147, 156, 165, 174, 184, 193, 203, 214, 224, 235, 246, 257
OFFSET
1,2
LINKS
FORMULA
Conjectured g.f.: (-1-x^14+3*x^13-4*x^12+3*x^11-x^10+x^7-x^6-x^2+x)/((x^2+1)*(x^4+1)*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009, confirmed by Robert Israel, May 06 2018
EXAMPLE
For n=1, the 4th elementary symmetric function of (3,4,5,6) is 3*4*5*6 = 360, and the 3rd elementary symmetric function of (3,4,5,6) is 3*4*5 + 3*4*6 + 3*5*6 + 4*5*6 = 342. So 360/342 = 1.0526..., and a(1) = 1. - Michael B. Porter, May 05 2018
MAPLE
seq(floor(1/120* x* (53848 + 26922 *x + 5165 *x^2 + 450* x^3 + 15* x^4)/(8 + x)/(60 + 15* x + x^2)), x=1..50); # Robert Israel, May 06 2018
MATHEMATICA
Table[Floor[1/120 x (53848 + 26922 x + 5165 x^2 + 450 x^3 + 15 x^4)/(8 + x)/(60 + 15 x + x^2)], {x, 42}] (* Ivan Neretin, May 02 2018 *)
PROG
(Python)
import math
print([math.floor(x*(53848+26922*x+5165*x**2+450*x**3+15*x**4)/(120*(8+x)*(60+15*x+x**2))) for x in range(1, 28)]) # Paul Muljadi, Apr 03 2024
(Julia)
print([floor(x*(53848+26922*x+5165*x^2+450*x^3+15*x^4)÷(120*(8+x)*(60+15*x+x^2))) for x in 1:28]) # Paul Muljadi, Apr 04 2024
CROSSREFS
Sequence in context: A200049 A279984 A184017 * A071423 A211004 A062781
KEYWORD
nonn
STATUS
approved