login
A062778
Values of Moebius-transform of PrimePi function.
1
0, 1, 2, 1, 3, 0, 4, 2, 2, 0, 5, 1, 6, 1, 1, 2, 7, 2, 8, 3, 2, 2, 9, 2, 6, 2, 5, 2, 10, 3, 11, 5, 4, 3, 4, 2, 12, 3, 4, 2, 13, 3, 14, 5, 6, 4, 15, 4, 11, 5, 6, 5, 16, 4, 8, 5, 6, 5, 17, 2, 18, 6, 8, 7, 9, 4, 19, 7, 8, 6, 20, 5, 21, 8, 9, 8, 12, 6, 22, 8, 13, 8, 23, 6, 13, 8, 11, 7, 24, 4, 14, 9, 11, 8
OFFSET
1,3
LINKS
FORMULA
a(n) = Sum_{d|n} pi(n/d)*mu(d).
EXAMPLE
n=12, divisors = D(12) = {1,2,3,4,6,12}, pi(12/divisors) = {5,3,2,2,1,0}, mu(divisors) = {1,-1,-1,0,1,0}, Sum = 5*1 - 3*1 - 2*1 + 0 + 1*1 + 0 = 1, thus a(12)=1; for p=prime(n), pi(p/divisor) = {n,0}, mu({1,p})={1,-1}, Sum = 1*n + 0 = n, so a(prime(n)) = n.
MATHEMATICA
f[n_] := Block[{d = Divisors@n}, Plus @@ (MoebiusMu /@ (n/d)*PrimePi /@ d)]; Array[f, 94] (* Robert G. Wilson v, Dec 07 2005 *)
PROG
(PARI) { for (n=1, 1000, d=divisors(n); write("b062778.txt", n, " ", sum(k=1, length(d), primepi(n/d[k]) * moebius(d[k]))) ) } \\ Harry J. Smith, Aug 10 2009
(PARI) a(n) = sumdiv(n, d, primepi(d)*moebius(n/d)); \\ Michel Marcus, Nov 05 2018
CROSSREFS
Sequence in context: A081171 A334594 A359336 * A363620 A363624 A108202
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 18 2001
STATUS
approved