OFFSET
1,2
COMMENTS
An XOR-triangle is an inverted 0-1 triangle formed by choosing a top row and having each entry in the subsequent rows be the XOR of the two values above it.
The second column is A038554.
LINKS
Peter Kagey, Table of n, a(n) for n = 1..9217 (first 1023 rows)
MathOverflow user DSM, Number triangle
EXAMPLE
Table begins:
1;
2, 1;
3, 0;
4, 2, 1;
5, 3, 0;
6, 1, 1;
7, 0, 0;
8, 4, 2, 1;
9, 5, 3, 0;
10, 7, 0, 0;
11, 6, 1, 1;
For the 11th row, the binary expansion of 11 is 1011_2, and the corresponding XOR-triangle is
1 0 1 1
1 1 0
0 1
1
Reading the rows of this triangle in binary gives 11, 6, 1, 1.
MATHEMATICA
Array[Prepend[FromDigits[#, 2] & /@ #2, #1] & @@ {#, Rest@ NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &]} &, 21] // Flatten (* Michael De Vlieger, May 08 2020 *)
PROG
(PARI) row(n) = {my(b=binary(n), v=vector(#b)); v[1] = n; for (n=1, #b-1, b = vector(#b-1, k, bitxor(b[k], b[k+1])); v[n+1] = fromdigits(b, 2); ); v; } \\ Michel Marcus, May 08 2020
CROSSREFS
KEYWORD
AUTHOR
Peter Kagey, May 07 2020
STATUS
approved