OFFSET
1,2
COMMENTS
An XOR-triangle is an inverted 0-1 triangle formed by choosing a top row and having each entry in the subsequent rows be the XOR of the two values above it.
Records occur at 1, 2, 4, 5, 9, 11, 17, 18, 22, 35, 45, 69, 71, 73, 91, 139, 142, 146, 182, ...
LINKS
Peter Kagey, Table of n, a(n) for n = 1..8191
MathOverflow user DSM, Number triangle
EXAMPLE
For n = 53, a(53) = 12 because 53 = 110101_2 in binary, and the corresponding XOR-triangle has 12 ones:
1 1 0 1 0 1
0 1 1 1 1
1 0 0 0
1 0 0
1 0
1
MATHEMATICA
Array[Total@ Flatten@ NestWhileList[Map[BitXor @@ # &, Partition[#, 2, 1]] &, IntegerDigits[#, 2], Length@ # > 1 &] &, 74] (* Michael De Vlieger, May 08 2020 *)
PROG
(PARI) a(n) = {my(b=binary(n), nb=hammingweight(n)); for (n=1, #b-1, b = vector(#b-1, k, bitxor(b[k], b[k+1])); nb += vecsum(b); ); nb; } \\ Michel Marcus, May 08 2020
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Peter Kagey, May 07 2020
STATUS
approved