login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130518 a(n) = Sum_{k=0..n} floor(k/3). (Partial sums of A002264.) 14
0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551, 570 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Complementary with A130481 regarding triangular numbers, in that A130481(n)+3*a(n) = n(n+1)/2 = A000217(n).

Apart from offset, the same as A062781. - R. J. Mathar, Jun 13 2008

Apart from offset, the same as A001840. - Michael Somos, Sep 18 2010

The sum of any three consecutive terms is a triangular number. - J. M. Bergot, Nov 27 2014

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).

FORMULA

G.f.: x^3 / ((1-x^3)*(1-x)^2).

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).

a(n) = (1/2)*floor(n/3)*(2n-1-3*floor(n/3)))) = A002264(n)*(2n-1-3*A002264(n))/2.

a(n) = (1/2)*A002264(n)*(n-1+A010872(n)).

a(n) = round(n*(n-1)/6) = round((n^2-n-1)/6) = floor(n*(n-1)/6) = ceil((n+1)*(n-2)/6). [Mircea Merca, Nov 28 2010]

a(n) = a(n-3)+n-2, n>2. [Mircea Merca, Nov 28 2010]

a(n) = A214734(n, 1, 3). [Renzo Benedetti, Aug 27 2012]

a(3n) = A000326(n), a(3n+1) = A005449(n), a(3n+2) = 3*A000217(n) = A045943(n). - Philippe Deléham, Mar 26 2013

a(n) = ( 3*n*(n-1) - (-1)^n*( (1+i*sqrt(3))^(n-2)+(1-i*sqrt(3))^(n-2) )/2^(n-3) - 2 )/18, where i=sqrt(-1). [Bruno Berselli, Nov 30 2014]

MAPLE

seq(floor(n*(n-1)/6), n=0..100); # Robert Israel, Nov 27 2014

MATHEMATICA

Table[n, {n, 0, 19}, {3}] // Flatten // Accumulate (* Jean-François Alcover, Jun 05 2013 *)

PROG

(Sage) [floor(binomial(n, 2)/3) for n in xrange(0, 60)] # [Zerinvary Lajos, Dec 01 2009]

(MAGMA) [Round(n*(n-1)/6): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011

(PARI) a(n)=n*(n-1)\/6 \\ Charles R Greathouse IV, Jun 05 2013

CROSSREFS

Cf. A002265, A002266, A004526, A010872, A010873, A010874, A062781, A130482, A130483.

Sequence in context: A062781 A145919 A058937 * A001840 A022794 A025693

Adjacent sequences:  A130515 A130516 A130517 * A130519 A130520 A130521

KEYWORD

nonn,easy

AUTHOR

Hieronymus Fischer, Jun 01 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 17:43 EST 2018. Contains 299414 sequences. (Running on oeis4.)