login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130521
Triangle, read by rows, where T(n,k) = T(n,k-1) + T(n-1,k-2) for n>=k>=2, with T(n+1,1) = T(n+1,0) = T(n,n) and T(0,0) = 1 for n>=0.
1
1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 6, 8, 11, 11, 11, 15, 19, 25, 33, 33, 33, 44, 55, 70, 89, 114, 114, 114, 147, 180, 224, 279, 349, 438, 438, 438, 552, 666, 813, 993, 1217, 1496, 1845, 1845, 1845, 2283, 2721, 3273, 3939, 4752, 5745, 6962, 8458, 8458, 8458, 10303
OFFSET
0,6
COMMENTS
G.f. of column 0 (A127782) satisfies: G(x) = 1 + x*G(x+x^2).
FORMULA
T(n,0) = Sum_{k=0..[n/2]} C(n-k,k)*T(n-k-1,0) for n>0 with T(0,0)=1. For column 1, T(n,1) = Sum_{k=0..[n/2]+1} [C(n-k,k) + C(n-k+1,k-1)]*T(n-k-1,1) for n>=2, with T(0,1)=T(1,1)=1.
EXAMPLE
T(5,3) = T(5,2) + T(4,1) = 15 + 4 = 19;
T(6,4) = T(6,3) + T(5,2) = 55 + 15 = 70;
T(7,0) = T(6,6) = 89 + 25 = 114.
Triangle begins:
1;
1, 1;
1, 1, 2;
2, 2, 3, 4;
4, 4, 6, 8, 11;
11, 11, 15, 19, 25, 33;
33, 33, 44, 55, 70, 89, 114;
114, 114, 147, 180, 224, 279, 349, 438;
438, 438, 552, 666, 813, 993, 1217, 1496, 1845;
1845, 1845, 2283, 2721, 3273, 3939, 4752, 5745, 6962, 8458; ...
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(k==0, if(n==0, 1, T(n-1, n-1)), T(n, k-1)+T(n-1, k-2)))
CROSSREFS
Cf. A127782 (column 0), A130522 (diagonal).
Sequence in context: A029076 A259774 A036015 * A369574 A365720 A332251
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jun 02 2007
STATUS
approved