login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036015
Number of partitions of n into parts not of form 4k+2, 8k, 8k+1 or 8k-1.
4
1, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 6, 7, 7, 8, 10, 12, 13, 14, 17, 21, 22, 24, 29, 33, 36, 40, 46, 53, 58, 63, 73, 83, 90, 99, 113, 127, 138, 152, 171, 191, 209, 228, 255, 285, 309, 338, 377, 416, 453, 495, 547, 603, 656, 714, 787, 865, 938, 1020, 1121, 1226
OFFSET
0,9
COMMENTS
Case k=2,i=1 of Gordon/Goellnitz/Andrews Theorem.
Also number of partitions in which no odd part is repeated, with no part of size less than or equal to 2 and where differences between adjacent parts are greater than 1 when the larger part is odd and greater than 2 when the larger part is even.
Euler transform of period 8 sequence [ 0, 0, 1, 1, 1, 0, 0, 0, ...]. - Michael Somos, Jun 28 2004
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 114.
LINKS
S.-D. Chen and S.-S. Huang, On the series expansion of the Göllnitz-Gordon continued fraction, Internat. J. Number Theory, 1 (2005), 53-63.
Nicolas Allen Smoot, A Partition Function Connected with the Göllnitz--Gordon Identities, arXiv:2005.09263 [math.NT], 2020. See g3(n) Table 2 p. 22.
Eric Weisstein's World of Mathematics, Goellnitz-Gordon Identities
FORMULA
Let qf(a, q) = Product(1-a*q^j, j=0..infinity); g.f. is 1/(qf(q^3, q^8)*qf(q^4, q^8)*qf(q^5, q^8)).
a(n) ~ sqrt(2-sqrt(2)) * exp(sqrt(n)*Pi/2) / (8*n^(3/4)). - Vaclav Kotesovec, Oct 04 2015
EXAMPLE
1 + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 3*x^11 + 4*x^12 + ...
MAPLE
M:=100; qf:=(a, q)->mul(1-a*q^j, j=0..M); tS:=1/(qf(q^3, q^8)*qf(q^4, q^8)*qf(q^5, q^8)); series(%, q, M); seriestolist(%);
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1/ (QPochhammer[ q^3, q^8] QPochhammer[ q^4, q^8] QPochhammer[ q^5, q^8]), {q, 0, n}] (* Michael Somos, Jun 22 2012 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[q^(k^2 + 2 k) QPochhammer[ -q, q^2, k] / QPochhammer[ q^2, q^2, k], {k, 0, Sqrt[n + 1] - 1}], {q, 0, n}]] (* Michael Somos, Jun 22 2012 *)
nmax=60; CoefficientList[Series[Product[1/((1-x^(8*k-3))*(1-x^(8*k-4))*(1-x^(8*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 04 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, n, 1 - ([ 0, 0, 1, 1, 1, 0, 0, 0][(k-1)%8 + 1]) * x^k, 1 + x * O(x^n)), n))} /* Michael Somos, Jun 28 2004 */
CROSSREFS
Sequence in context: A251631 A029076 A259774 * A130521 A369574 A365720
KEYWORD
nonn,easy
EXTENSIONS
a(64) corrected by Vaclav Kotesovec, Oct 04 2015
STATUS
approved