OFFSET
0,9
COMMENTS
*
/ \
*-*-*-*-*
\ / \ /
*---*
\ /
*
Such a way to stack is not allowed.
From George Beck, Jul 28 2023: (Start)
Equivalently, a(n) is the number of partitions of n such that the 2-modular Ferrers diagram is symmetric.
The first example for n = 16 below corresponds to the partition 9 + 2 + 2 + 2 + 1 with 2-modular Ferrers diagram:
2 2 2 2 1
2
2
2
1
(End)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
FORMULA
a(2n+1) = A036015(n).
a(2n ) = A036016(n).
Euler transform of period 16 sequence [1, 0, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 0, 1, 0, ...].
a(n) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 08 2023
G.f.: Product_{k>=1} 1/((1 - x^(16*k-2))*(1 - x^(16*k-8))*(1 - x^(16*k-14))) + x*Product_{k>=1} 1/((1 - x^(16*k-6))*(1 - x^(16*k-8))*(1 - x^(16*k-10))). - Vaclav Kotesovec, Feb 08 2023
EXAMPLE
a(16) = 4.
* *
/ \ / \
*---*---*---*---* *---*---*
\ / \ / \ / \ / / \ / \ / \
*---*---*---* *---*---*---*
\ / \ / \ / \ / \ / \ /
*---*---* *---*---*
\ / \ / \ / \ /
*---* *---*
\ / \ /
* *
*---* *---* * *
\ / \ / \ / / \ / \
*---* *---* *---* * *---*
\ / \ / \ / \ / \ / \ / \ /
*---* *---* *---*---*---*
\ / \ / \ / \ / \ / \ /
*---*---* *---*---*
\ / \ / \ / \ /
*---* *---*
\ / \ /
* *
a(17) = 2.
*---* *---* *---*
/ \ / \ \ / \ / \ /
*---*---* *---* *---*
/ \ / \ / \ \ / \ / \ /
*---*---*---* *---*---*---*
\ / \ / \ / \ / \ / \ /
*---*---* *---*---*
\ / \ / \ / \ /
*---* *---*
\ / \ /
* *
MATHEMATICA
nmax = 100; CoefficientList[Series[(QPochhammer[x^6, x^16]*QPochhammer[x^10, x^16] + x*QPochhammer[x^2, x^16]*QPochhammer[x^14, x^16])/(QPochhammer[x^2, x^4] * QPochhammer[x^8, x^16]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 08 2023 *)
PROG
(Ruby)
def s(k, n)
s = 0
(1..n).each{|i| s += i if n % i == 0 && i % k == 0}
s
end
def A(ary, n)
a_ary = [1]
a = [0] + (1..n).map{|i| ary.inject(0){|s, j| s + j[1] * s(j[0], i)}}
(1..n).each{|i| a_ary << (1..i).inject(0){|s, j| s - a[j] * a_ary[-j]} / i}
a_ary
end
def A316384(n)
A([[1, 1], [4, -1]], n).map{|i| i.abs}
end
p A316384(100)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 30 2018
STATUS
approved