login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082303
McKay-Thompson series of class 32e for the Monster group.
12
1, -1, -1, 0, 1, 0, -1, 1, 2, -1, -2, 1, 2, -1, -3, 1, 4, -2, -5, 2, 5, -2, -6, 3, 8, -4, -9, 4, 10, -4, -12, 6, 15, -7, -17, 7, 19, -8, -22, 10, 26, -12, -30, 13, 33, -14, -38, 17, 45, -21, -51, 22, 56, -24, -64, 29, 74, -33, -83, 36, 92, -40, -104, 46, 119, -53, -133, 58
OFFSET
0,9
COMMENTS
Number 4 of the 130 identities listed in Slater 1952. - Michael Somos, Aug 21 2015
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275. see page 274.
Lucy Joan Slater, Further Identities of the Rogers-Ramanujan Type, Proc. London Math. Soc., Series 2, vol.s2-54, no.2, pp.147-167, (1952).
FORMULA
Euler transform of period 4 sequence [ -1, -1, -1, 0, ...].
Expansion of q^(1/8) * eta(q) / eta(q^4) in powers of q.
Given g.f. A(x), then B(q) = (A(q^8) / q)^8 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v + 16) * (u + 16) * u - v^2. - Michael Somos, Jan 09 2005
G.f.: Product_{k>0} (1 - x^k) / (1 - x^(4*k)).
a(n) = (-1)^n * A029838(n).
Convolution square is A082304.
G.f.: 2 - 2/(1+Q(0)), where Q(k)= 1 - x^(2*k+1) - x^(2*k+1)/(1 + x^(2*k+2) + x^(2*k+2)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
G.f.: Sum_{k>=0} (-1)^k * q^k^2 * Product_{i=1..k} (1 + x^(2*i - 1)) / (1 - x^(4*i)). - Michael Somos, Aug 21 2015
a(n) = -(1/n)*Sum_{k=1..n} A046897(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
abs(a(n)) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 07 2023
EXAMPLE
G.f. = 1 - x - x^2 + x^4 - x^6 + x^7 + 2*x^8 - x^9 - 2*x^10 + x^11 + 2*x^12 + ...
T32e = 1/q - q^7 - q^15 + q^31 - q^47 + q^55 + 2*q^63 - q^71 - 2*q^79 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] / QPochhammer[ x^4], {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] / QPochhammer[ -x^2, x^2], {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (16 (1 - m)/m)^(1/8), {q, 0, n - 1/8}]]; (* Michael Somos, Aug 20 2014 *)
a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 1, n, 2}] / Product[ 1 + x^k, {k, 2, n, 2}], {x, 0, n}]; (* Michael Somos, Aug 20 2014 *)
a[ n_] := SeriesCoefficient[ QHypergeometricPFQ[ {-x}, {-x^2}, x^2, x], {x, 0, n}]; (* Michael Somos, Aug 21 2015 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^k^2 QPochhammer[ -x, x^2, k] / QPochhammer[ x^4, x^4, k], {k, 0, Sqrt@n}], {x, 0, n}]]; (* Michael Somos, Aug 21 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^4 + A), n))};
(PARI) q='q+O('q^66); Vec( eta(q)/eta(q^4) ) \\ Joerg Arndt, Mar 25 2017
CROSSREFS
Sequence in context: A085342 A025825 A293224 * A316384 A029838 A213649
KEYWORD
sign
AUTHOR
Michael Somos, Apr 08 2003
STATUS
approved