login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082304
McKay-Thompson series of class 16d for the Monster group.
4
1, -2, -1, 2, 3, -2, -4, 4, 5, -8, -8, 10, 11, -12, -15, 18, 22, -26, -29, 34, 38, -42, -51, 56, 66, -78, -85, 98, 109, -120, -139, 156, 176, -202, -222, 250, 279, -306, -346, 384, 429, -482, -530, 590, 650, -714, -797, 876, 972, -1080, -1180, 1304, 1431, -1562, -1728, 1892, 2078, -2290, -2496
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275. see page 273.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of phi(-q) / psi(q^2) in powers of q where phi(), psi() are Ramanujan theta functions.
Expansion of q^(1/4) * (eta(q) / eta(q^4))^2 in powers of q.
Euler transform of period 4 sequence [ -2, -2, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A001936. - Michael Somos, Jul 04 2014
Given g.f. A(x), then B(q) = A(q)^4 / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v^2 - u * (16 + u) * (16 + v). - Michael Somos, Jul 04 2014
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^2 + v^2)^2 - u*v * (4 + u*v)^2. - Michael Somos, Aug 13 2007
Given g.f. A(x), then B(q) = A(q^4) / q satisfies 0 = f(B(q), B(q^5)) where f(u, v) = u*v * (16 + u^2*v^2)^2 - (u+v)^2 * (u^2 - 6*u*v + v^2)^2. - Michael Somos, Jul 04 2014
G.f.: Product_{k>0} ((1 - x^k) / (1 - x^(4*k)))^2.
a(n) = (-1)^n * A029839(n). Convolution inverse of A001936. - Michael Somos, Jul 04 2014
abs(a(n)) ~ exp(Pi*sqrt(n)/2) / (2^(3/2) * n^(3/4)). - Vaclav Kotesovec, Feb 07 2023
EXAMPLE
T16d = 1/q - 2*q^3 - q^7 + 2*q^11 + 3*q^15 - 2*q^19 - 4*q^23 + 4*q^27 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (QPochhammer[ x] / QPochhammer[ x^4])^2, {x, 0, n}]; (* Michael Somos, Jul 04 2014 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) / eta(x^4 + A))^2, n))};
CROSSREFS
Sequence in context: A096920 A087154 A029839 * A321664 A250099 A241949
KEYWORD
sign
AUTHOR
Michael Somos, Apr 08 2003
STATUS
approved