login
A321664
A sequence consisting of three disjoint copies of the Fibonacci sequence, one shifted, with the property that for any four consecutive terms the maximum term is the sum of the two minimum terms.
2
0, 1, 1, 1, 2, 1, 2, 3, 2, 4, 5, 3, 7, 8, 5, 12, 13, 8, 20, 21, 13, 33, 34, 21, 54, 55, 34, 88, 89, 55, 143, 144, 89, 232, 233, 144, 376, 377, 233, 609, 610, 377, 986, 987, 610, 1596, 1597, 987, 2583, 2584, 1597, 4180, 4181, 2584, 6764, 6765, 4181, 10945
OFFSET
0,5
COMMENTS
This sequence was constructed to show that there are many sequences, besides those merging with multiples of the Padovan sequence A000931, with the property that for any four consecutive terms the maximum term is the sum of the two minimum terms. This refutes a conjecture that was formerly in that entry.
LINKS
David Nacin, Van der Laan Sequences and a Conjecture on Padovan Numbers, J. Int. Seq., Vol. 26 (2023), Article 23.1.2.
FORMULA
G.f.: (1 + x + x^2 + x^3 + x^4)/(1 - x^3 - x^6) - 1/(1 - x^3).
G.f.: (x + x^2 + x^3 - x^5 - x^7)/(1 - 2*x^3 + x^9).
a(3*n) = A000045(n+2)-1, a(3*n+1) = A000045(n+2), a(3*n+2) = A000045(n+1).
a(n) = 2*a(n-3) - a(n-9). - G. C. Greubel, Dec 04 2018
EXAMPLE
For n=13, as n is 1 (mod 3), we find a(3*4+1) is the 4+2=6th Fibonacci number which is 8.
MAPLE
seq(coeff(series(((x^4+x^3+x^2+x+1)/(1-x^3-x^6))-(1/(1-x^3)), x, n+1), x, n), n = 0 .. 60); # Muniru A Asiru, Nov 29 2018
MATHEMATICA
CoefficientList[Series[(x+x^2+x^3-x^5-x^7)/(1-2x^3+x^9), {x, 0, 20}], x] (* or *)
LinearRecurrence[{0, 0, 2, 0, 0, 0, 0, 0, -1}, {0, 1, 1, 1, 2, 1, 2, 3, 2}, 50] (* G. C. Greubel, Dec 04 2018 *)
PROG
(Python)
def a(n):
if n<6:
return [0, 1, 1, 1, 2, 1][n]
return a(n-3)+a(n-6)+[1, 0, 0][n%3]
(Racket)
(define (f x) (cond [(< x 6) (list-ref (list 0 1 1 1 2 1) x)]
[else (+ (f (- x 3)) (f (- x 6)) (list-ref (list 1 0 0) (remainder x 3)))]))
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((x+x^2+x^3-x^5-x^7)/(1-2*x^3+x^9))); // Vincenzo Librandi, Nov 29 2018
(PARI) my(x='x+O('x^70)); Vec((x+x^2+x^3-x^5-x^7)/(1-2*x^3+x^9)) \\ G. C. Greubel, Dec 04 2018
(Sage) s=((x+x^2+x^3-x^5-x^7)/(1-2*x^3+x^9)).series(x, 70); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 04 2018
CROSSREFS
Exhibits a property shared with multiples of A000931.
Sequence in context: A087154 A029839 A082304 * A250099 A241949 A288126
KEYWORD
nonn
AUTHOR
David Nacin, Nov 23 2018
STATUS
approved