login
A321665
Number of strict integer partitions of n containing no 1's or prime powers.
5
1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 2, 2, 0, 3, 1, 3, 2, 4, 1, 5, 2, 5, 4, 6, 4, 9, 3, 8, 7, 10, 6, 13, 7, 13, 12, 16, 10, 20, 13, 22, 19, 24, 18, 32, 23, 34, 30, 37, 30, 49, 37, 50, 47, 58, 51, 73, 58, 77, 74, 89, 80, 108, 91, 116
OFFSET
0,19
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..500 from Fausto A. C. Cariboni)
FORMULA
G.f.: Product_{k>=2, k not a prime power} 1 + x^k. - Joerg Arndt, Dec 22 2020
EXAMPLE
The a(36) = 9 strict integer partitions:
(36)
(30,6)
(21,15)
(22,14)
(24,12)
(26,10)
(18,12,6)
(20,10,6)
(14,12,10)
MATHEMATICA
nn=100;
ser=Product[If[PrimePowerQ[n], 1, 1+x^n], {n, 2, nn}];
CoefficientList[Series[ser, {x, 0, nn}], x]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 11 2018
STATUS
approved