login
A102395
A mod 2 related Jacobsthal sequence.
2
1, 0, 0, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 6, 0, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 6, 2, 6, 6, 10, 0, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 6, 2, 6, 6, 10, 2, 2, 2, 6, 2, 6, 6, 10, 2, 6, 6, 10, 6, 10, 10, 22, 0, 2, 2, 2, 2, 2, 2, 6, 2, 2, 2, 6, 2, 6, 6, 10, 2, 2, 2, 6, 2, 6, 6, 10, 2, 6, 6, 10, 6, 10, 10, 22, 2, 2, 2
OFFSET
0,4
COMMENTS
Conjecture: all the terms are in A078008.
The conjecture is true since a(n) = A078008(A000120(n)). - Paul Barry, Jan 07 2005
LINKS
FORMULA
a(2^n-1) = A078008(n).
A001316(n) = a(n) + 2*A102396(n).
a(n) = Sum_{k=0..n} if(n+k == 0 (mod 3), C(n, k) mod 2, 0).
a(n) = Sum_{k=0..n} (1-ceiling((n+k)/3)+floor((n+k)/3))*(binomial(n,k) mod 2). - Wesley Ivan Hurt, Mar 01 2023
MATHEMATICA
f[n_] := (2^n + 2*(-1)^n)/3; a[n_] := f[DigitCount[n, 2, 1]]; Array[a, 100, 0] (* Amiram Eldar, Jul 22 2023 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jan 06 2005
STATUS
approved