login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A002095
Number of partitions of n into nonprime parts.
(Formerly M0271 N0094)
65
1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 8, 8, 12, 13, 17, 19, 26, 28, 37, 40, 52, 58, 73, 79, 102, 113, 139, 154, 191, 210, 258, 284, 345, 384, 462, 509, 614, 679, 805, 893, 1060, 1171, 1382, 1528, 1792, 1988, 2319, 2560, 2986, 3304, 3823, 4231, 4888, 5399, 6219, 6870
OFFSET
0,5
COMMENTS
Partial sums of A023895. - Emeric Deutsch, Apr 19 2006
Column k=0 of A222656. - Alois P. Heinz, May 29 2013
REFERENCES
L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
A. Murthy, Some new Smarandache sequences, functions and partitions, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000 (but beware errors).
Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 2.6.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..5000 (first 1001 terms from T. D. Noe)
FORMULA
G.f.: Product_{i>0} (1-x^prime(i))/(1-x^i). - Vladeta Jovovic, Jul 31 2004
EXAMPLE
a(6) = 3 from the partitions 6 = 1+1+1+1+1+1 = 4+1+1.
MAPLE
g:=product((1-x^ithprime(j))/(1-x^j), j=1..60): gser:=series(g, x=0, 60): seq(coeff(gser, x, n), n=0..55); # Emeric Deutsch, Apr 19 2006
MATHEMATICA
NonPrime[n_Integer] := FixedPoint[n + PrimePi[ # ] &, n + PrimePi[n]]; CoefficientList[ Series[1/Product[1 - x^NonPrime[i], {i, 1, 50}], {x, 0, 50}], x]
PROG
(Haskell)
a002095 = p a018252_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Jan 15 2012
(PARI) first(n)=my(x='x+O('x^(n+1)), pr=1); forprime(p=2, n+1, pr *= (1-x^p)); pr/prod(i=1, n+1, 1-x^i) \\ Charles R Greathouse IV, Jun 23 2017
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, Dec 23 1999
Corrected by Robert G. Wilson v, Feb 11 2002
STATUS
approved