|
|
A002095
|
|
Number of partitions of n into nonprime parts.
(Formerly M0271 N0094)
|
|
45
|
|
|
1, 1, 1, 1, 2, 2, 3, 3, 5, 6, 8, 8, 12, 13, 17, 19, 26, 28, 37, 40, 52, 58, 73, 79, 102, 113, 139, 154, 191, 210, 258, 284, 345, 384, 462, 509, 614, 679, 805, 893, 1060, 1171, 1382, 1528, 1792, 1988, 2319, 2560, 2986, 3304, 3823, 4231, 4888, 5399, 6219, 6870
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
|
|
REFERENCES
|
L. M. Chawla and S. A. Shad, On a trio-set of partition functions and their tables, J. Natural Sciences and Mathematics, 9 (1969), 87-96.
A. Murthy, Some new Smarandache sequences, functions and partitions, Smarandache Notions Journal Vol. 11 N. 1-2-3 Spring 2000 (but beware errors).
Amarnath Murthy and Charles Ashbacher, Generalized Partitions and Some New Ideas on Number Theory and Smarandache Sequences, Hexis, Phoenix; USA 2005. See Section 2.6.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
a(6) = 3 from the partitions 6 = 1+1+1+1+1+1 = 4+1+1.
|
|
MAPLE
|
g:=product((1-x^ithprime(j))/(1-x^j), j=1..60): gser:=series(g, x=0, 60): seq(coeff(gser, x, n), n=0..55); # Emeric Deutsch, Apr 19 2006
|
|
MATHEMATICA
|
NonPrime[n_Integer] := FixedPoint[n + PrimePi[ # ] &, n + PrimePi[n]]; CoefficientList[ Series[1/Product[1 - x^NonPrime[i], {i, 1, 50}], {x, 0, 50}], x]
|
|
PROG
|
(Haskell)
a002095 = p a018252_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
(PARI) first(n)=my(x='x+O('x^(n+1)), pr=1); forprime(p=2, n+1, pr *= (1-x^p)); pr/prod(i=1, n+1, 1-x^i) \\ Charles R Greathouse IV, Jun 23 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy,nice
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|