login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002098
G.f.: 1/Product_{k>=1} (1-prime(k)*x^prime(k)).
(Formerly M0597 N0215)
8
1, 0, 2, 3, 4, 11, 17, 29, 49, 85, 144, 226, 404, 603, 1025, 1679, 2558, 4201, 6677, 10190, 16599, 25681, 39643, 61830, 96771, 147114, 228338, 352725, 533291, 818624, 1263259, 1885918, 2900270, 4396577, 6595481, 10040029, 15166064, 22642064
OFFSET
0,3
COMMENTS
a(n) is sum of all numbers k for which A001414(k), the sum of prime factors with repetition, equals n. See Havermann's link. - J. M. Bergot, Jun 14 2013
REFERENCES
S.M. Kerawala, On a Pair of Arithmetic Functions Analogous to Chawla's Pair, J. Natural Sciences and Mathematics, 9 (1969), circa p. 103.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
b:= proc(n, i) option remember;
if n<0 then 0
elif n=0 then 1
elif i=0 then 0
else b(n, i-1) +b(n-ithprime(i), i) *ithprime(i)
fi
end:
a:= n-> b(n, numtheory[pi](n)):
seq(a(n), n=0..40); # Alois P. Heinz, Nov 20 2010
MATHEMATICA
b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i==0, 0, True, b[n, i-1] + b[n - Prime[i], i]*Prime[i]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
With[{nn=40}, CoefficientList[Series[1/Product[1-Prime[k]x^Prime[k], {k, nn}], {x, 0, nn}], x]] (* Harvey P. Dale, Jun 20 2021 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-isprime(k)*k*x^k)) \\ Seiichi Manyama, Feb 27 2022
CROSSREFS
Row sums of A064364, A116864.
Sequence in context: A061919 A328883 A192613 * A301318 A297180 A162969
KEYWORD
nonn
EXTENSIONS
Better description and more terms from Vladeta Jovovic, May 09 2003
STATUS
approved