Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0597 N0215 #44 Feb 27 2022 10:23:11
%S 1,0,2,3,4,11,17,29,49,85,144,226,404,603,1025,1679,2558,4201,6677,
%T 10190,16599,25681,39643,61830,96771,147114,228338,352725,533291,
%U 818624,1263259,1885918,2900270,4396577,6595481,10040029,15166064,22642064
%N G.f.: 1/Product_{k>=1} (1-prime(k)*x^prime(k)).
%C a(n) is sum of all numbers k for which A001414(k), the sum of prime factors with repetition, equals n. See Havermann's link. - _J. M. Bergot_, Jun 14 2013
%D S.M. Kerawala, On a Pair of Arithmetic Functions Analogous to Chawla's Pair, J. Natural Sciences and Mathematics, 9 (1969), circa p. 103.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Seiichi Manyama, <a href="/A002098/b002098.txt">Table of n, a(n) for n = 0..6274</a> (terms 0..500 from T. D. Noe)
%H H. Havermann: <a href="http://chesswanks.com/seq/sopfr/">Tables of sum-of-prime-factors sequences (overview with links to the first 50000 sums).</a>
%p b:= proc(n,i) option remember;
%p if n<0 then 0
%p elif n=0 then 1
%p elif i=0 then 0
%p else b(n, i-1) +b(n-ithprime(i), i) *ithprime(i)
%p fi
%p end:
%p a:= n-> b(n, numtheory[pi](n)):
%p seq(a(n), n=0..40); # _Alois P. Heinz_, Nov 20 2010
%t b[n_, i_] := b[n, i] = Which[n<0, 0, n==0, 1, i==0, 0, True, b[n, i-1] + b[n - Prime[i], i]*Prime[i]]; a[n_] := b[n, PrimePi[n]]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 19 2016, after _Alois P. Heinz_ *)
%t With[{nn=40},CoefficientList[Series[1/Product[1-Prime[k]x^Prime[k],{k,nn}],{x,0,nn}],x]] (* _Harvey P. Dale_, Jun 20 2021 *)
%o (PARI) my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-isprime(k)*k*x^k)) \\ _Seiichi Manyama_, Feb 27 2022
%Y Cf. A002099, A006906.
%Y Row sums of A064364, A116864.
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E Better description and more terms from _Vladeta Jovovic_, May 09 2003