login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130841
Number of ways to write n as a sum of oterms, where an oterm is an ordered product of (1+oterm), sorted by size and an empty product has value 1.
0
1, 1, 1, 2, 2, 3, 3, 5, 6, 8, 8, 12, 12, 15, 17, 23, 23, 31, 31, 41, 44, 52, 52, 69, 73, 85, 91, 109, 109, 136, 136, 162, 170, 193, 199, 248, 248, 279, 291, 344, 344, 406, 406, 466, 493, 545, 545, 646, 655, 740, 763, 860, 860, 986, 1002, 1132, 1163, 1272, 1272, 1484
OFFSET
1,4
COMMENTS
Every oterm is at least 1 (implicit) and every 1+oterm is at least 2. Therefore to write 1 as a product of (1+oterms) can only be done as an empty product, which has value 1. Therefore a(1) = 1.
a(n) is also the number of non-isomorphic Gödel algebras of cardinality n. - Diego Valota, Jul 03 2019
REFERENCES
Diego Valota (2019) Spectra of Gödel Algebras. In: Silva A., Staton S., Sutton P., Umbach C. (eds) Language, Logic, and Computation. TbiLLC 2018. Lecture Notes in Computer Science, vol 11456. Springer, Berlin, Heidelberg.
LINKS
Pietro Codara, Gabriele Maurina, and Diego Valota, Computing Duals of Finite Gödel Algebras, Proceedings of the Federated Conference on Computer Science and Information Systems, Annals of Computer Science and Information Science (2020) Vol. 21, 31-34.
FORMULA
a(n) = sum over sequences (n_1,n_2,...,n_k) such that 2 <= n_1 <= n_2 <= ... <= n_k and n1*n2*...*nk=n of the product of j from 1 to k of a(n_j-1). The program, in J, implements this formula. (It works by factorizing n and then grouping the factors in all distinct ways. This J code handles the a(1) case without requiring any exception case.)
EXAMPLE
a(8)=5 because we can write 8 as one of (1+1+1+1+1+1+1+1), (1+1+1+1+(1+1)*(1+1)), (1+1+(1+1)*(1+1+1)), (1+1)*(1+1+1+1), (1+1)*(1+1)*(1+1). [corrected by Diego Valota, Jul 03 2019]
PROG
(J) belly =: ~. @ (i."1~) @ (#~ #: (i.@ ^~))
bell =: (<"1@belly@#) </.&.> <
bells =: [: ~. [: /:~&.> [: /:~&.>&.> bell
fax =: [: >&.> [: */&.>&.> [: bells q:
weird =: [: +/ [: > [: */&.> [: $:"0&.> [: <:&.> fax
w =: weird"0
CROSSREFS
Sequence in context: A227426 A229950 A050318 * A002095 A029017 A035371
KEYWORD
nonn
AUTHOR
Daniel R. L. Brown, Jul 19 2007, revised Nov 23 2007
STATUS
approved