login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130843
Numbers k for which a number m < k exists such that digitsum(binomial(k,m)) = k.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 15, 16, 18, 21, 26, 27, 33, 36, 39, 42, 45, 48, 51, 52, 53, 54, 60, 63, 66, 67, 71, 72, 74, 75, 78, 79, 80, 81, 90, 99, 105, 108, 114, 117, 123, 124, 126, 127, 129, 134, 135, 141, 144, 150, 152, 153, 158, 159, 162, 171, 177, 180, 186
OFFSET
1,2
LINKS
EXAMPLE
k=13 --> m=4 because binomial(13,4) = 13!/(4!*9!) = 715 --> 7+1+5 = 13.
k=75 --> m=37 because binomial(75,37) = 75!/(37!*38!)=3446310324346630677300 --> 3+4+4+6+3+1+3+2+4+3+4+6+6+3+6+7+7+3 = 75.
MAPLE
P:=proc(n) local i, j, k, w; for i from 1 by 1 to n do for j from 1 to i do w:=0; k:=binomial(i, j); while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if i=w then print(i); break; fi; od; od; end: P(200);
MATHEMATICA
sdbQ[n_]:=Module[{d=Total[IntegerDigits[#]]&/@Table[Binomial[n, m], {m, n-1}]}, MemberQ[d, n]]; Join[{1}, Select[Range[200], sdbQ]] (* Harvey P. Dale, Jan 03 2013 *)
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
STATUS
approved