|
|
A130845
|
|
a(4n) = a(4n+1) = a(4n+2) = A001477(n), a(4n+3) = A005408(n).
|
|
4
|
|
|
0, 0, 0, 1, 1, 1, 1, 3, 2, 2, 2, 5, 3, 3, 3, 7, 4, 4, 4, 9, 5, 5, 5, 11, 6, 6, 6, 13, 7, 7, 7, 15, 8, 8, 8, 17, 9, 9, 9, 19, 10, 10, 10, 21, 11, 11, 11, 23, 12, 12, 12, 25, 13, 13, 13, 27, 14, 14, 14, 29, 15, 15, 15, 31, 16, 16, 16, 33, 17, 17, 17
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,8
|
|
LINKS
|
Table of n, a(n) for n=0..70.
Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).
|
|
FORMULA
|
O.g.f.: x^3*(1+x+x^2+x^3+x^4)/((1-x)^2*(1+x)^2*(1+x^2)^2). - R. J. Mathar, Aug 22 2008
a(0)=0, a(1)=0, a(2)=0, a(3)=1, a(4)=1, a(5)=1, a(6)=1, a(7)=3, a(n)=2*a(n-4)- a(n-8). - Harvey P. Dale, Mar 04 2012
a(n) = cos(n*Pi/2)/4-(n-1)*(2*sin(n*Pi/2)+(-1)^n-5)/16. - Wesley Ivan Hurt, May 05 2021
|
|
MATHEMATICA
|
CoefficientList[Series[x^3(1+x+x^2+x^3+x^4)/((1-x)^2(1+x)^2(1+x^2)^2), {x, 0, 80}], x] (* or *) LinearRecurrence[{0, 0, 0, 2, 0, 0, 0, -1}, {0, 0, 0, 1, 1, 1, 1, 3}, 80] (* Harvey P. Dale, Mar 04 2012 *)
|
|
CROSSREFS
|
Sequence in context: A102845 A064126 A175333 * A134653 A090207 A202538
Adjacent sequences: A130842 A130843 A130844 * A130846 A130847 A130848
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul Curtz, Jul 20 2007
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Sep 28 2007
|
|
STATUS
|
approved
|
|
|
|