login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377320
a(n) is the smallest positive integer k such that n + k and n - k have the same number of prime factors.
3
1, 1, 1, 3, 2, 2, 2, 6, 1, 5, 3, 2, 3, 6, 1, 1, 3, 2, 9, 2, 2, 5, 3, 4, 6, 1, 1, 11, 6, 4, 1, 6, 2, 2, 2, 2, 3, 8, 1, 1, 3, 2, 4, 3, 4, 12, 1, 1, 3, 2, 3, 1, 1, 3, 2, 7, 1, 4, 7, 4, 3, 6, 5, 1, 2, 1, 3, 5, 1, 3, 4, 4, 3, 1, 4, 13, 6, 2, 5, 15, 2, 7, 1, 3, 3, 1, 3
OFFSET
4,4
COMMENTS
If the strong Goldbach conjecture is true, that every even number >= 8 is the sum of two distinct primes, then a positive integer k <= A082467(n) exists for n >= 4.
FORMULA
1 <= a(n) <= A082467(n).
EXAMPLE
a(7) = 3 because 10 and 4 have both two prime factors. 8 and 6 or 9 and 7 respectively have a different number of prime factors.
MAPLE
A377320:=proc(n)
local k;
for k to n-1 do
if NumberTheory:-Omega(n+k)=NumberTheory:-Omega(n-k) then
return k
fi
od;
end proc;
seq(A377320(n), n=4..90);
MATHEMATICA
A377320[n_] := Module[{k = 0}, While[PrimeOmega[++k + n] != PrimeOmega[n - k]]; k];
Array[A377320, 100, 4] (* Paolo Xausa, Dec 02 2024 *)
PROG
(PARI) a(n) = my(k=1); while (bigomega(n+k) != bigomega(n-k), k++); k; \\ Michel Marcus, Nov 17 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Huber, Nov 17 2024
STATUS
approved