login
A377317
Numbers k such that prime(k), prime(k)+6, and prime(k)+12 are primes.
1
3, 4, 5, 7, 11, 13, 15, 18, 19, 25, 26, 36, 39, 49, 54, 55, 58, 69, 73, 102, 107, 110, 111, 116, 118, 129, 160, 164, 182, 184, 187, 194, 199, 206, 210, 218, 225, 229, 234, 236, 252, 253, 260, 271, 272, 275, 284, 285, 291, 300, 321, 339, 351, 352, 358, 387, 388
OFFSET
1,1
FORMULA
a(n) = pi(A023241(n)).
EXAMPLE
5 is in this sequence because: prime(5) = 11, and 11+6 = 17 and 11+12 = 23 are primes.
MATHEMATICA
Select[Range[1, PrimePi[3000]], PrimeQ[Prime[#] + 6] && PrimeQ[Prime[#] + 12] &]
PROG
(PARI) for(k=1, primepi(3000), p = prime(k); if(isprime(p+6) && isprime(p+12), print(k)))
CROSSREFS
Supersequence of A377318.
Sequence in context: A330109 A082378 A046642 * A330110 A330123 A354711
KEYWORD
nonn
AUTHOR
Kritsada Moomuang, Oct 24 2024
STATUS
approved