login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131382
Minimal number m such that Sum_digits(n*m)=n.
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 19, 4, 19, 19, 13, 28, 28, 11, 46, 199, 19, 109, 73, 37, 199, 73, 37, 271, 172, 1333, 289, 559, 1303, 847, 1657, 833, 1027, 1576, 1282, 17497, 4339, 2119, 2323, 10909, 11111, 12826, 14617, 14581, 16102, 199999, 17449, 38269
OFFSET
1,10
LINKS
Peter Lomax, Table of n, a(n) for n = 1..1000 (first 90 terms from T. D. Noe)
H. Fredricksen, E. J. Ionascu, F. Luca, and P. Stanica, Minimal Niven numbers, arXiv:0803.0477 [math.NT], 2008.
FORMULA
a(n) = A002998(n) / n. - Michel Marcus, Dec 10 2012
EXAMPLE
n=23 --> a=73 because 23*73 = 1679 and 1+6+7+9=23.
n=34 --> a=847 because 34*847 = 28798 and 2+8+7+9+8=34.
MAPLE
P:=proc(n) local i, j, k, w; for i from 1 by 1 to n do for j from 1 to n do w:=0; k:=i*j; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if i=w then print(j); break; fi; od; od; end: P(1000000);
MATHEMATICA
m[n_]:=Module[{m=1}, While[Total[IntegerDigits[m*n]]!=n, m++]; m]; Array[m, 60] (* Harvey P. Dale, Sep 28 2013 *)
PROG
(PARI) a(n)=my(k); while(sumdigits(k+=n)!=n, ); k/n \\ Charles R Greathouse IV, Feb 01 2013
CROSSREFS
Sequence in context: A004460 A082126 A176411 * A291475 A057430 A010858
KEYWORD
base,nonn
AUTHOR
STATUS
approved